General | Carbohydrate O/F | Substrate utilisation | Enzymes | Metabolites | Antibiotics

Overview


  • Bacteroides caccae is a Gram-negative, non-spore-forming, anaerobic, non-motile, rod-shaped bacterium. It has been detected in at least 38 gut microbiome compilation studies or metastudies. The DNA G+C content is 40-42%. Bacteroides caccae is often a widespread coloniser of gut. (Browne2016; Johnson1986; Song2010Bergeys; Terekhov2018)



  • This organism has been recovered from human faeces (CCUG), vagina and infection. The risk classification (www.baua.de) for this organism is 2, i.e., risk of individual infection, but low risk of spread. It is an opportunistic pathogen. Is a known gut commensal.

  • GENERAL CHARACTERISTICS (Johnson1986); (Song2010Bergeys);
    Character Response
  • Substrates hydrolysed or digested:
  • aesculin;
  • 💧
  • Bile tolerance:
  • Resistant to 20% bile
  • pH
  • Acidity tolerance:
  • tolerates pH 5.2;
  • 🌡
  • Temperature tolerance:
  • grows at 25(w) 30℃; grows at 37℃; grows weakly at 45℃;
  • H+
  • Acid from carbohydrates usually produced:
  • arabinose; L-arabinose; fructose; glucose; mannose; rhamnose; ribose; xylose; aesculin; glycogen; inulin; starch; cellubiose; gentiobiose; lactose; maltose; melezitose; melibiose; raffinose; sucrose; trehalose;
  • ±
  • Strain-dependent acid from carbs:
  • salicin;
  • Substrates assimilated or utilised:
  • glucose; melibiose; pyruvate;
  • Active enzymes:
  • Ala arylamidase; alkaline phosphatase; arabinosidase; N-Ac β-glucosaminidase; fucosidase; α-galactosidase; β-galactosidase; α-glucosidase; β-glucosidase; Glu-Glu arylamidase; Gly arylamidase; glycine aminopeptidase; G6PDH and 6PGDH; Leu arylamidase; Leu-Gly arylamidase;
  • ±
  • Strain-dependent active enzymes:
  • Phe arylamidase; Ser arylamidase;

  • SPECIAL FEATURES (Johnson1986); (Song2010Bergeys);
    Character Response
  • Metabolites produced:
  • acetate (major); propionate (trace); succinate (major); isovalerate (trace); H₂ (trace);
  • Metabolites not produced:
  • H₂S; indole;
  • Haemolysis:
  • present but weak
  • Nitrate:
  • not reduced
  • NO3➔NO2:
  • not reduced

  • RESPONSE TO ANTIBIOTICS (Johnson1986); (Song2010Bergeys); (Goldstein2018a); (Goldstein2013b); (Tyrrell2012); (Goldstein2008); (Goldstein2006a); (Citron2003); (Betriu2001); (Goldstein2000a); (Goldstein1999); (Schaumann1999);
    Class Active Resistant
  • Penicillins:
  • amoxicillin; amoxicillin-clavulanic acid; ampicillin-sulbactam; benzylpenicillin; cloxacillin; dicloxacillin; doripenem; ertapenem; imipenem; meropenem; piperacillin-tazobactam; ticarcillin-clavulanic acid;
  • ampicillin; azlocillin; aztreonam; bacampicillin; oxacillin; penicillin G; piperacillin; ticarcillin;
  • Cephalosporins:
  • cefazolin; cefdinir; cefotiam; cephalothin;
  • cefaclor; cefadroxil; cefepime; cefixime; cefmetazole; cefoperazone; cefotaxime; ceftazidime; cefuroxime; moxalactam;
  • Macrolides:
  • azithromycin; clarithromycin; josamycin; roxithromycin; spiramycin;
  • erythromycin;
  • Tetracyclines:
  • chlortetracycline; doxycycline; meclocycline; methacycline; minocycline; oxytetracycline; tigecycline;
  • Quinolines:
  • clinafloxacin; enoxacin; garenoxacin; gatifloxacin; gemifloxacin; pefloxacin; sarafloxacin; sparfloxacin; trovafloxacin;
  • ciprofloxacin; clavulanic-acid; nalidixic-acid; norfloxacin; ofloxacin; pipemidic-acid;
  • Aminoglycosides:
  • amikacin; dihydrostreptomycin; gentamicin; kanamycin; neomycin; sisomicin; spectinomycin; streptomycin; tobramycin;
  • Polypep/ketides:
  • rifabutin; rifampicin; rifapentine;
  • bacitracin;
  • Heterocycles:
  • chloramphenicol; fusidic-acid; metronidazole; trimethoprim; trimethoprim-sulfamethoxazole;
  • fosfomycin; isoniazid; nitrofurantoin; sulfadiazine; sulfadimethoxine; sulfamethoxazole; sulfanilamide;
  • Vancomycins:
  • vancomycin; teicoplanin;
  • Miscellaneous antibiotics:
  • lincomycin; linezolid; colistin;
  • daptomycin;

  • N/A

  • Bacteroidetes maintain a complex and generally beneficial relationship with the host when retained in the gut, but when they escape this environment they can cause significant pathology, including bacteremia and abscess formation in multiple body sites. Genomic and proteomic analyses have vastly added to our understanding of the manner in which Bacteroides species adapt to, and thrive in, the human gut. A few examples are (i) complex systems to sense and adapt to nutrient availability, (ii) multiple pump systems to expel toxic substances, and (iii) the ability to influence the host immune system so that it controls other (competing) pathogens. [PMID: 17934076]

  • GutFeeling KnowledgeBase COMMENTS [Website]

    The strain was isolated from human feces and is characterized to be nonmotile, anaerobic, gram-negative rods. It is aslo able to produce major amounts of succinate from glucose. [https://doi.org/10.1099/00207713-36-4-499]

  • Johnson, J. L., Moore, W. E. C., & Moore, L. V. H. (1986). Bacteroides caccae sp. nov., Bacteroides merdae sp. nov., and Bacteroides stercoris sp. nov. Isolated from Human Feces. International Journal of Systematic Bacteriology, 36(4), 499–501.


  • Details


    GENERAL
    Lineage Physiology General Growth Tolerances Hydrol./digest./degr.
    Phylum:  Bacteroidetes Class:  Bacteroidia Order:  Bacteroidales Family:  Bacteroidaceae Genus:  Bacteroides Gram stain:  neg O2 Relation.:  anaerobic Spore:  No spore Motility:  Sessile Morphology:  Rod
    Health:  Unknown
    Source:  human faeces (CCUG), vagina and infection
    DNA G+C(%):  40-42
    Lower T(℃):  25(w) 30(+)
    Mid T(℃):  37(+)
    High T(℃):  45(w)
    pH 4.2-5.9:  5.2(+)
    Bile reaction(%):  20(+)
    Aesculin:  + Urea:  neg Gelatin:  w Hippurate:  neg Milk:  neg Meat:  neg

    CARBOHYDRATE ACID FORMATION
    Monosaccharide O/F Oligosaccharide O/F Polysaccharide O/F Polyol O/F Other O/F
    Arabinose:  + L-Arabinose:  + Fructose:  + Glucose:  + Mannose:  + Rhamnose:  d(+) Ribose:  + Xylose:  + Cellubiose:  d(+) Gentiobiose:  + Lactose:  + Maltose:  + Melezitose:  d(+) Melibiose:  + Sucrose:  + Trehalose:  + Aesculin:  + Glycogen:  w(+) Inulin:  + Starch:  d(+) Xylan:  neg Erythritol:  neg Glycerol:  neg Mannitol:  neg Sorbitol:  neg Salicin:  d

    SUBSTRATE ASSIMILATION & UTILISATION
    Monosaccharide util/assim Oligosaccharide util/assim Other carboh. util/assim Amino acid util/assim Organic acid util/assim
    Glucose:  + Melibiose:  + Thr:  neg Lactate:  neg Pyruvate:  +

    ENZYME ACTIVITY
    Enzymes: General Enzymes: Carbohydrate Enzymes: Protein Enzymes: Arylamidases Enzymes: Esters/fats
    Catalase:  neg Urease:  neg G6PDH6PGDH:  + α-Arab:  + Ac-β-glcamnd:  + α-Fucosidase:  + α-Galactosidase:  + β-Galactosidase:  + α-Glucosidase:  + β-Glucosidase:  + β-Glucuronidase:  neg ArgDH:  vr GluDC:  vr GlyAP:  + AlanineAA:  + GluGluAA:  + GlyAA:  + LeuAA:  + LeuGlyAA:  + ProAA:  neg PyrrolidAA:  neg PheAA:  d SerAA:  d AlkalineP:  + Lipase:  neg

    METABOLITES - PRODUCTION & USE
    Fuel Usable Metabolites Metabolites Released Special Products Compounds Produced

    Glucose

    Succinate

    Acetate:  Major(+) Propionate:  trace(+) Succinate:  Major(+) Isovalerate:  trace(+) H2S:  neg H2:  trace(+) Indole:  neg

    ANTIBIOTICS ℞
    Penicillins & Penems (μg/mL) Cephalosporins (μg/mL) Aminoglycosides (μg/mL) Macrolides (μg/mL) Quinolones (μg/mL)
    amoxicillin:  S(4)
    Augmentin:  S(MIC50): 2, MIC90: 8, RNG: (0.5–64)
    ampicillin:  R(MIC50): 128, MIC90: >128, RNG: (8->128)
    amp-sulb:  S(MIC50): 2, MIC90: 16, RNG: (0.1–64)
    azlocillin:  Res
    aztreonam:  Res
    bacampicillin:  Res
    benzyl-pen:  Sens
    cloxacillin:  Sens
    dicloxacillin:  Sens
    oxacillin:  R(64)
    penicillin_G:  R(MIC50): 128, MIC90: >128, RNG: (16->128)
    piperacillin:  R(MIC50): 128, MIC90: >128, RNG: (32->128)
    piper-taz:  S(MIC50): 0.2, MIC90: 16, RNG: (0.06–64)
    ticarcillin:  R(MIC50): >128, MIC90: >128, RNG: (8->128)
    tica-clav:  S(MIC50): 0.5, MIC90: 16, RNG: (0.06–128)
    doripenem:  S(MIC50): 0.5, MIC90: 2, RNG: (0.25–4)
    ertapenem:  S(MIC50): 0.5, MIC90: 2, RNG: (0.25–8)
    imipenem:  S(MIC50): 0.5, MIC90: 0.5, RNG: (0.06-8)
    meropenem:  S(MIC50): 0.5, MIC90: 2, RNG: (0.25-8)
    cefaclor:  Res
    cefadroxil:  Res
    cefazolin:  Sens
    cefdinir:  Sens
    cefepime:  R(MIC50): >128, MIC90: >128, RNG: (16–>128)
    cefixime:  Res
    cefmetazole:  R(MIC50): 64, MIC90: >128, RNG: (32->18)
    cefoperazone:  R(MIC50): 128, MIC90: >128, RNG: (64->128)
    cefotaxime:  R(MIC50): 64, MIC90: >128, RNG: (0.5–>128)
    cefotetan:  Var(MIC50): 16, MIC90: 128, RNG: (0.06–256)
    cefotiam:  Sens
    cefoxitin:  Var(MIC50): 16, MIC90: 32, RNG: (2–32)
    ceftazidime:  R(MIC50): 128, MIC90: >128, RNG: (32–>128)
    ceftizoxime:  Var(MIC50): 16, MIC90: 256, RNG: (0.06–>256)
    cefuroxime:  Res
    cephalothin:  Sens
    moxalactam:  Res
    amikacin:  R(>256)
    dihydrostrept:  Res
    gentamicin:  Res
    kanamycin:  Res
    neomycin:  Res
    sisomicin:  Res
    spectinomycin:  Res
    streptomycin:  Res
    tobramycin:  R(>1024)
    azithromycin:  S(4)
    erythromycin:  R(MIC50): 8, MIC90: >32, RNG: (1->32)
    clarithromycin:  S(0.5)
    roxithromycin:  Sens
    spiramycin:  S(3)
    josamycin:  Sens
    linezolid:  S(MIC50): 4, MIC90: 4, RNG: (2–4)
    ciprofloxacin:  R(MIC50): 8, MIC90: 16, RNG: (8–16)
    clavulanate:  Res
    clinafloxacin:  S(0.12/2)
    enoxacin:  Sens
    garenoxacin:  S(MIC50): 2, MIC90: 4, RNG: (0.25-4)
    gatifloxacin:  S(MIC50): 1, MIC90: 2, RNG: (0.06-4)
    gemifloxacin:  S(MIC50): 0.5, MIC90: 2, RNG: (0.5–2)
    levofloxacin:  Var(MIC50): 4, MIC90: 4, RNG: (2–8)
    moxifloxacin:  Var(MIC50): 4, MIC90: 16, RNG: (0.5–32)
    nalidixic-acid:  Res
    norfloxacin:  R(>256)
    ofloxacin:  R(MIC50): 8, MIC90: 16, RNG: (4–16)
    pefloxacin:  Sens
    pipemidic_acid:  Res
    sarafloxacin:  Sens
    sparfloxacin:  S(MIC50): 1, MIC90: 2, RNG: (0.5–16)
    trovafloxacin:  S(MIC50): 0.25, MIC90: 0.5, RNG: (0.06-0.5)
    Tetracyclines (μg/mL) Vancomycin Class (μg/mL) Polypep/ketides (μg/mL) Heterocycles (μg/mL) Other (μg/mL)
    doxycycline:  S(0.047)
    chlortetracycline:  Sens
    meclocycline:  Sens
    methacycline:  Sens
    minocycline:  Sens
    oxytetracycline:  Sens
    tetracycline:  Var(MIC50): 6), MIC90: Var(6
    tigecycline:  S(MIC50): 1, MIC90: 4, RNG: (≤0.06-8)
    teicoplanin:  R(MIC50): 64, MIC90: 128, RNG: (16–128)
    vancomycin:  R(MIC50): 64, MIC90: 128, RNG: (32–256)
    bacitracin:  R(MIC50): >256, MIC90: >256, RNG: (16–>256)
    rifabutin:  Sens
    rifampicin:  Sens
    rifapentine:  Sens
    chloramphenicol:  S(MIC50): 4, MIC90: 4, RNG: (1-4)
    fosfomycin:  R(>1024)
    isoniazid:  Res
    metronidazole:  S(MIC50): 1, MIC90: 2, RNG: (0.5-16)
    nitrofurantoin:  Res
    sulfadiazine:  Res
    sulfadimethoxine:  Res
    sulfamethoxazole:  R(96)
    sulfanilamide:  Res
    trimethoprim:  S(8)
    SXT:  S(2)
    clindamycin:  Var(MIC50): 4, MIC90: >128, RNG: (0.5–>128)
    lincomycin:  Sens
    daptomycin:  R(MIC50): >32, MIC90: >32, RNG: (>32)
    colistin:  S(1.5)
    fusidic-acid:  Sens

    References


    SPECIFIC REFERENCES FOR BACTEROIDES CACCAE
  • Browne2016 - Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation.
  • Johnson1986 - Bacteroides caccae sp. nov., Bacteroides merdae sp. nov., and Bacteroides stercoris sp. nov. Isolated from Human Feces.
  • Shah1989 - Proposal To Restrict the Genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and Closely Related Species.
  • Wexler2007 - Bacteroides : the Good, the Bad, and the Nitty-Gritty.
  • Song2010Bergeys - Bacteroides. In Bergey's manual of systematic bacteriology: Vol. 4. The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes
  • Terekhov2018 - Ultrahigh-throughput functional profiling of microbiota communities.
  • Feng2015 - Gut microbiome development along the colorectal adenoma-carcinoma sequence
  • Bervoets2013 - Differences in gut microbiota composition between obese and lean children: a cross-sectional study
  • Coretti2018 - Gut Microbiota Features in Young Children With Autism Spectrum Disorders
  • ElMouzan2018 - Microbiota profile in new-onset pediatric Crohn's disease: data from a non-Western population
  • Finegold2010 - Pyrosequencing study of fecal microflora of autistic and control children
  • Gargari2018 - Evidence of dysbiosis in the intestinal microbial ecosystem of children and adolescents with primary hyperlipidemia and the potential role of regular hazelnut intake
  • Giongo2011 - Toward defining the autoimmune microbiome for type 1 diabetes
  • Houttu2018 - Overweight and obesity status in pregnant women are related to intestinal microbiota and serum metabolic and inflammatory profiles
  • Huang2019 - Analysis of microbiota in elderly patients with Acute Cerebral Infarction
  • Jackson2016 - Signatures of early frailty in the gut microbiota
  • Li2019c - Gut Microbiota Differs Between Parkinson's Disease Patients and Healthy Controls in Northeast China
  • PerezBrocal2015 - Metagenomic Analysis of Crohn's Disease Patients Identifies Changes in the Virome and Microbiome Related to Disease Status and Therapy, and Detects Potential Interactions and Biomarkers
  • Wan2020 - Case-Control Study of the Effects of Gut Microbiota Composition on Neurotransmitter Metabolic Pathways in Children With Attention Deficit Hyperactivity Disorder
  • Wang2019 - Differential composition of gut microbiota among healthy volunteers, morbidly obese patients and post-bariatric surgery patients
  • Zhong2019 - Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics
  • Laue2020 - Prospective associations of the infant gut microbiome and microbial function with social behaviors related to autism at age 3 years
  • Goldstein2018a - Comparative In Vitro Activities of Relebactam, Imipenem, the Combination of the Two, and Six Comparator Antimicrobial Agents against 432 Strains of Anaerobic Organisms, Including Imipenem-Resistant Strains.
  • Goldstein2013b - Comparative in vitro activities of GSK2251052, a novel boron-containing leucyl-tRNA synthetase inhibitor, against 916 anaerobic organisms.
  • Tyrrell2012 - In vitro activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic, against 377 strains of anaerobic bacteria and 34 strains of Corynebacterium species.
  • Goldstein2008 - In vitro activities of doripenem and six comparator drugs against 423 aerobic and anaerobic bacterial isolates from infected diabetic foot wounds.
  • Goldstein2006a - In vitro activity of ceftobiprole against aerobic and anaerobic strains isolated from diabetic foot infections.
  • Citron2003 - In vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, bacitracin, and four other antimicrobials against intestinal anaerobic bacteria.
  • Betriu2001 - In vitro activities of MK-0826 and 16 other antimicrobials against Bacteroides fragilis group strains.
  • Goldstein2000a - Comparative In vitro activities of ertapenem (MK-0826) against 1,001 anaerobes isolated from human intra-abdominal infections.
  • Goldstein1999 - In vitro activity of gemifloxacin (SB 265805) against anaerobes.
  • Schaumann1999 - In vitro activities of gatifloxacin, two other quinolones, and five nonquinolone antimicrobials against obligately anaerobic bacteria.
  • ...............................
  • GUT MICROBIOME COMPILATIONS AND METASTUDIES FOR BACTEROIDES CACCAE
  • Almeida2019 - A new genomic blueprint of the human gut microbiota.
  • Benno1989 - Comparison of fecal microflora of elderly persons in rural and urban areas of Japan.
  • Browne2016 - Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation.
  • Byrd2020 - Stability and dynamics of the human gut microbiome and its association with systemic immune traits.
  • Chen2020 - Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine
  • Chen2020a - Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease
  • Chung2016 - Modulation of the human gut microbiota by dietary fibres occurs at the species level.
  • Chung2019 - Impact of carbohydrate substrate complexity on the diversity of the human colonic microbiota.
  • Dubinkina2017 - Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease
  • Favier2002 - Molecular monitoring of succession of bacterial communities in human neonates.
  • Forster2019 - A human gut bacterial genome and culture collection for improved metagenomic analyses.
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Jeong2021 - The effect of taxonomic classification by full-length 16S rRNA sequencing with a synthetic long-read technology
  • Jie2017 - The gut microbiome in atherosclerotic cardiovascular disease
  • Karlsson2013 - Gut metagenome in European women with normal, impaired and diabetic glucose control
  • King2019 - Baseline human gut microbiota profile in healthy people and standard reporting template.
  • Lagier2016 - Culture of previously uncultured members of the human gut microbiota by culturomics.
  • LeChatelier2013 - Richness of human gut microbiome correlates with metabolic markers
  • Li2019b - Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus
  • MacFarlane2004 - Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis.
  • McLaughlin2010 - The bacteriology of pouchitis: a molecular phylogenetic analysis using 16S rRNA gene cloning and sequencing.
  • Minerbi2019 - Altered microbiome composition in individuals with fibromyalgia
  • Moore1995 - Intestinal floras of populations that have a high risk of colon cancer
  • New2022 - Collective effects of human genomic variation on microbiome function.
  • Nielsen2014 - MetaHIT Consortium. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.
  • PerezBrocal2015 - Metagenomic Analysis of Crohn's Disease Patients Identifies Changes in the Virome and Microbiome Related to Disease Status and Therapy, and Detects Potential Interactions and Biomarkers
  • Pfleiderer2013 - Culturomics identified 11 new bacterial species from a single anorexia nervosa stool sample.
  • RajilicStojanovic2014 - The first 1000 cultured species of the human gastrointestinal microbiota.
  • Rothschild2018 - Environment dominates over host genetics in shaping human gut microbiota.
  • Tyakht2013 - Human gut microbiota community structures in urban and rural populations in Russia.
  • Urban2020 - Altered Fecal Microbiome Years after Traumatic Brain Injury
  • Walker2011 - High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease.
  • Wang2018 - A metagenome-wide association study of gut microbiota in asthma in UK adults
  • Wang2018a - Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model.
  • Wang2020a - Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents
  • Woodmansey2004 - Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects.
  • Yang2020 - Species-Level Analysis of Human Gut Microbiota With Metataxonomics.
  • Yang2020a - Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families
  • Zeller2014 - Potential of fecal microbiota for early-stage detection of colorectal cancer
  • Zou2019 - 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses.
  • ...............................
  • GENERAL REFERENCES FOR BACTEROIDES CACCAE
  • CCUG - Culture Collection University of Gothenburg - Entire Collection
  • Song2010Bergeys - Bacteroides. In Bergey's manual of systematic bacteriology: Vol. 4. The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes