General | Carbohydrate O/F | Substrate utilisation | Enzymes | Metabolites | Antibiotics

Overview


  • Bacteroides thetaiotaomicron is a Gram-negative, non-spore-forming, strictly anaerobic, non-motile, rod-shaped bacterium. It has been detected in at least 43 gut microbiome compilation studies or metastudies. The DNA G+C content is 42%. Bacteroides thetaiotaomicron is often a widespread coloniser of gut. (Cato1976a; Eggerth1933; Song2010Bergeys; Terekhov2018)



  • This organism has been recovered from human faeces and clinical sources (blood - CCUG). The risk classification (www.baua.de) for this organism is 2, i.e., risk of individual infection, but low risk of spread. Can cause opportunistic infections, particularly in immunocompromised people. Is a known gut commensal. Robust growth can have positive consequences for gut health.

  • QUIRKS
  • Produces external peptic lyases (PL1, PL9, etc.)

  • GENERAL CHARACTERISTICS (Cato1976a); (Eggerth1933); (Song2010Bergeys);
    Character Response
  • Substrates hydrolysed or digested:
  • mucin;
  • ±
  • Strain-dependent hydrolysis or digestion:
  • milk;
  • 💧
  • Bile tolerance:
  • Resistant to 20% bile
  • H+
  • Acid from carbohydrates usually produced:
  • arabinose; fructose; fucose; galactose; mannose; rhamnose; xylose; amygdalin; aesculin; glycogen; inulin; pectin; starch; cellubiose; maltose; melezitose; raffinose; sucrose; trehalose; salicin;
  • Substrates assimilated or utilised:
  • glucosamine; D-glucuronate; D-galacturonate; mucin;
  • Active enzymes:
  • Ala arylamidase; alkaline phosphatase; acid phosphatase; N-Ac β-glucosaminidase; α-galactosidase; β-galactosidase; α-glucosidase; glutamic acid decarboxylase; Leu arylamidase; Leu-Gly arylamidase;

  • SPECIAL FEATURES (Cato1976a); (Eggerth1933); (Song2010Bergeys);
    Character Response
  • Metabolites produced:
  • acetate; H₂S; indole;
  • Nitrate:
  • not reduced

  • RESPONSE TO ANTIBIOTICS (Yehya2013); (Song2010Bergeys); (Goldstein2018a); (Goldstein2013a); (Goldstein2013b); (Tyrrell2012); (Citron2012a); (Goldstein2008); (Goldstein2006a); (Citron2003); (Betriu2001); (Citron2001); (Goldstein1999); (Schaumann1999);
    Class Active Resistant
  • Penicillins:
  • ampicillin-sulbactam; doripenem; ertapenem; imipenem; meropenem; piperacillin-tazobactam; ticarcillin-clavulanic acid;
  • amoxicillin; ampicillin; azlocillin; aztreonam; bacampicillin; benzylpenicillin; cloxacillin; dicloxacillin; oxacillin; penicillin; penicillin G; piperacillin; ticarcillin;
  • Cephalosporins:
  • cefoxitin;
  • cefaclor; cefadroxil; cefamandole; cefazolin; cefdinir; cefepime; cefmetazole; cefoperazone; cefotaxime; cefotetan; cefotiam; cefprozil; ceftazidime; ceftizoxime; cefuroxime; cephalothin; moxalactam;
  • Macrolides:
  • josamycin;
  • azithromycin; clarithromycin; erythromycin; fidaxomicin; quinupristin-dalfopristin; roxithromycin; telithromycin;
  • Tetracyclines:
  • chlortetracycline; doxycycline; meclocycline; methacycline; minocycline; oxytetracycline; tetracycline; tigecycline;
  • Quinolines:
  • clinafloxacin; enoxacin; garenoxacin; gatifloxacin; gemifloxacin; pefloxacin; sarafloxacin; sparfloxacin; trovafloxacin;
  • ciprofloxacin; clavulanic-acid; nalidixic-acid; norfloxacin; ofloxacin; pipemidic-acid;
  • Aminoglycosides:
  • amikacin; dihydrostreptomycin; gentamicin; kanamycin; neomycin; sisomicin; spectinomycin; streptomycin; tobramycin;
  • Polypep/ketides:
  • rifabutin; rifampicin; rifapentine;
  • bacitracin;
  • Heterocycles:
  • chloramphenicol; fusidic-acid; metronidazole; nitrofurantoin; trimethoprim-sulfamethoxazole;
  • fosfomycin; isoniazid; sulfadiazine; sulfadimethoxine; sulfamethoxazole; sulfanilamide; trimethoprim;
  • Vancomycins:
  • vancomycin; teicoplanin;
  • Miscellaneous antibiotics:
  • lincomycin; ranbezolid;
  • daptomycin; colistin; telithromycin;

  • NOTES

     

    A common member of the human gut.

    Fuel sources used:
    This species is considered a generalist because it can use a wide range of fuel sources for energy including fibre, resistant starch, simple sugars, protein, and mucus.

    Metabolites produced:
    Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, BCAAs, butyrate, GABA, lactate, LPS, propionate, succinate, folate, biotin, riboflavin.

    Metabolites consumed:
    In addition, our genomic analysis indicates that most members of this species do not consume any reported metabolites.

  • References: [1] [2] [3]

  • This organism has many types of mobile genetic elements. A large portion of the B. thetaiotaomicron proteome is dedicated to harvesting dietary polysaccharides and metabolizing their liberated sugars. Previous studies in germfree mice revealed that B. thetaiotaomicron stimulates angiogenesis during postnatal intestine development, thereby increasing the host's capacity for absorbing nutrients. B. thetaiotaomicron also regulates synthesis of various gut epithelial glycans, including those with terminal _-linked fucose, that can be harvested by its _-fucosidases. [PMID: 12663928]

    This microorganism can utilize dozens of dietary plant polysaccharides and host-derived mucosal glycans. [PMID: 24330590] The infographic of Bacteroides thetaiotaomicron ( Bt) illustrates two key facets of its symbiotic lifestyle in the human gut: a broad ability to digest dietary fiber polysaccharides and host glycans, and a dynamic cell-surface architecture that promotes both interactions with and evasion of the host immune system. The starch-utilization system (Sus) is a cell-surface and periplasmic system involved in starch cleavage and transport. Over 80 additional Sus-like systems utilize substrates ranging from host glycans to plant cell wall pectins. Bt has evolved intricate strategies to interact with other microbes or its host, including modification of its surface. Some nutrient utilization pathways select for or directly trigger changes in capsular polysaccharide (CPS) expression. Like other fermentative members of the gut microbiome, Bt produces host absorbable short-chain and organic acids, which can all be absorbed by the host as a source of energy. [https://doi.org/10.1016/j.tim.2018.08.005] One of the most studied representatives of this genus is Bacteroides thetaiotaomicron, a Gram-negative obligate anaerobe that is notable for its ability to utilize a wide variety of polysaccharides using the extensive saccharolytic machinery that is controlled by an expanded repertoire of transcription factors (TFs). [PMID: 24330590]

  • GutFeeling KnowledgeBase COMMENTS [Website]

    The human distal gut microbiota contain more bacterial cells than all of our body's other microbial communities combined. More than 90% of phylogenetic types belong to two divisions, the Bacteroidetes and the Firmicutes, with the remaining types distributed among eight other divisions. Bacteroides thetaiotaomicron is a Gram-negative anaerobe bacterium. It is a dominant member of human distal intestinal microbiota. [UP000001414]

  • Distaso, A (1912). Contribution à l'étude sur l'intoxication intestinale. Zbl. Bakt. Parasit. 62: 433-468.


  • Details


    GENERAL
    Lineage Physiology General Growth Tolerances Hydrol./digest./degr.
    Phylum:  Bacteroidetes Class:  Bacteroidia Order:  Bacteroidales Family:  Bacteroidaceae Genus:  Bacteroides Gram stain:  neg O2 Relation.:  strictly anaerobic Spore:  No spore Motility:  Sessile Morphology:  Rod
    Health:   Positive
    Source:  human faeces and clinical sources (blood - CCUG)
    DNA G+C(%):  42
    Bile reaction(%):  20(+)
    Urea:  neg Gelatin:  neg Milk:  curdle

    CARBOHYDRATE ACID FORMATION
    Monosaccharide O/F Oligosaccharide O/F Polysaccharide O/F Polyol O/F Other O/F
    Arabinose:  + Fructose:  + Fucose:  + Galactose:  + Glucose:  w Mannose:  + Rhamnose:  + Xylose:  + Cellubiose:  + Lactose:  w Maltose:  + Melezitose:  + Sucrose:  + Trehalose:  + Amygdalin:  + Aesculin:  + Glycogen:  + Inulin:  + Starch:  + Pectin:  + Glycerol:  neg Mannitol:  neg Sorbitol:  neg Salicin:  +

    SUBSTRATE ASSIMILATION & UTILISATION
    Monosaccharide util/assim Oligosaccharide util/assim Other carboh. util/assim Amino acid util/assim Organic acid util/assim
    Glucosamine:  +

    ENZYME ACTIVITY
    Enzymes: General Enzymes: Carbohydrate Enzymes: Protein Enzymes: Arylamidases Enzymes: Esters/fats
    Urease:  neg Ac-β-glcamnd:  + α-Fucosidase:  vr α-Galactosidase:  + β-Galactosidase:  + α-Glucosidase:  + β-Glucuronidase:  neg α-Mannosidase:  neg ArgDH:  neg GluDC:  + AlanineAA:  + GluGluAA:  vr GlyAA:  neg LeuAA:  + LeuGlyAA:  + PyrrolidAA:  neg AlkalineP:  + AcidP:  + Esterase(C4):  neg EstLip(C8):  neg Lipase(C14):  neg

    METABOLITES - PRODUCTION & USE
    Fuel Usable Metabolites Metabolites Released Special Products Compounds Produced

    Fibre, Complex Polysacc., Starch, Resistant Starch, Pectin, Mucus, Simple Sugars, Protein

    None/Unknown

    Branched-Chain AA, Folate, Biotin, Riboflavin, Acetate, Lactate, Propionate, Butyrate, Succinate, GABA

    LPS Antigen

    Acetate:  + H2S:  + Indole:  +

    ANTIBIOTICS ℞
    Penicillins & Penems (μg/mL) Cephalosporins (μg/mL) Aminoglycosides (μg/mL) Macrolides (μg/mL) Quinolones (μg/mL)
    amoxicillin:  R(MIC50): 32, MIC90: >128, RNG: (16->128)
    Augmentin:  Var(MIC50): 1, MIC90: 8, RNG: (0.5-8)
    ampicillin:  R(MIC50): 64, MIC90: >128, RNG: (32->128)
    amp-sulb:  S(MIC50): 4, MIC90: 16, RNG: (1–64)
    azlocillin:  Res
    aztreonam:  Res
    bacampicillin:  Res
    benzyl-pen:  Res
    cloxacillin:  Res
    dicloxacillin:  Res
    oxacillin:  R(64)
    penicillin:  R(MIC50): 32, MIC90: >128, RNG: (16->128)
    penicillin_G:  R(MIC50): 32, MIC90: >64, RNG: (4–>64)
    piperacillin:  R(MIC50): 64, MIC90: >256, RNG: (4->256)
    piper-taz:  S(MIC50): 16, MIC90: 32, RNG: (8–>64)
    ticarcillin:  R(MIC50): 8, MIC90: 16, RNG: (32->128)
    tica-clav:  S(MIC50): 2, MIC90: 16, RNG: (0.1–128)
    doripenem:  S(MIC50): 0.5, MIC90: 1, RNG: (0.12-2)
    ertapenem:  S(MIC50): 0.5, MIC90: 2, RNG: (0.03-8)
    imipenem:  S(MIC50): 0.25, MIC90: 2, RNG: (0.125-2)
    meropenem:  S(MIC50): 0.25, MIC90: 0.5, RNG: (0.125-0.5)
    cefaclor:  R(>3000)
    cefadroxil:  Res
    cefamandole:  R(64/>64)
    cefazolin:  R(16)
    cefdinir:  Res
    cefepime:  R(MIC50): >128, MIC90: >128, RNG: (16–>128)
    cefixime:  Var(MIC50): 1, MIC90: 16, RNG: (1-16)
    cefmetazole:  R(MIC50): 64, MIC90: >128, RNG: (8->128)
    cefoperazone:  R(32/64)
    cefotaxime:  R(MIC50): 64, MIC90: >256, RNG: (0.25->256)
    cefotetan:  R(MIC50): 64, MIC90: 256, RNG: (2-256)
    cefotiam:  R(MIC50): >128, MIC90: >128, RNG: (128->128)
    cefoxitin:  S(MIC50): 32, MIC90: 64, RNG: (16–>64)
    cefpodoxime:  Var(MIC50): 0.5, MIC90: >64, RNG: (0.25->64)
    cefprozil:  R(MIC50): 8, MIC90: 16, RNG: (8-16)
    ceftazidime:  R(MIC50): 128, MIC90: >256, RNG: (4->256)
    ceftizoxime:  R(MIC50): 64, MIC90: >256, RNG: (≤0.062->256)
    cefuroxime:  R(MIC50): 16, MIC90: 64, RNG: (0.5->64)
    cephalothin:  Res
    moxalactam:  R(MIC50): 64, MIC90: 128, RNG: (1->128)
    amikacin:  R(>256)
    dihydrostrept:  Res
    gentamicin:  Res
    kanamycin:  Res
    neomycin:  Res
    sisomicin:  Res
    spectinomycin:  Res
    streptomycin:  Res
    tobramycin:  R(>1024)
    azithromycin:  R(MIC50): >32, MIC90: >32, RNG: (32–>32)
    erythromycin:  R(MIC50): 8, MIC90: >32, RNG: (2–>32)
    fidaxomicin:  R(MIC50): >512, MIC90: >512, RNG: (>512)
    clarithromycin:  R(MIC50): 8, MIC90: >32, RNG: (2–>32)
    quin-dalf:  R(MIC50): 16, MIC90: 32, RNG: (8-32)
    roxithromycin:  R(MIC50): >32, MIC90: >32, RNG: (16–>32)
    spiramycin:  Var(MIC50): 5), MIC90: Var(5
    telithromycin:  R(MIC50): 8, MIC90: >32, RNG: (2–>32)
    josamycin:  Sens
    linezolid:  Var(MIC50): 4, MIC90: 8, RNG: (2-8)
    ciprofloxacin:  R(MIC50): 32, MIC90: >32, RNG: (16–>32)
    clavulanate:  Res
    clinafloxacin:  S(MIC50): 0.06, MIC90: 0.25, RNG: (0.03-0.25)
    enoxacin:  Sens
    garenoxacin:  S(MIC50): 1, MIC90: 4, RNG: (0.25-16)
    gatifloxacin:  S(MIC50): 1, MIC90: 2, RNG: (1->16)
    gemifloxacin:  S(MIC50): 1, MIC90: 1, RNG: (0.125–16)
    levofloxacin:  Var(MIC50): 8, MIC90: 8, RNG: (1->32)
    moxifloxacin:  Var(MIC50): 4, MIC90: 32, RNG: (0.5–64)
    nalidixic-acid:  Res
    norfloxacin:  R(>256)
    ofloxacin:  R(MIC50): 16, MIC90: 16, RNG: (8-256)
    pefloxacin:  Sens
    pipemidic_acid:  Res
    sarafloxacin:  Sens
    sparfloxacin:  S(MIC50): 2, MIC90: 2, RNG: (0.25–2)
    trovafloxacin:  S(MIC50): 0.5, MIC90: 2, RNG: (0.25-8)
    Tetracyclines (μg/mL) Vancomycin Class (μg/mL) Polypep/ketides (μg/mL) Heterocycles (μg/mL) Other (μg/mL)
    doxycycline:  S(0.023)
    chlortetracycline:  Sens
    meclocycline:  Sens
    methacycline:  Sens
    minocycline:  Sens
    oxytetracycline:  Sens
    tetracycline:  Sens
    tigecycline:  S(MIC50): 1, MIC90: 4, RNG: (≤0.06-8)
    teicoplanin:  R(MIC50): 64, MIC90: 128, RNG: (16–128)
    vancomycin:  R(MIC50): 64, MIC90: 128, RNG: (32–256)
    bacitracin:  R(MIC50): >256, MIC90: >256, RNG: (16–>256)
    rifabutin:  Sens
    rifampicin:  Sens
    rifapentine:  Sens
    chloramphenicol:  S(MIC50): 4, MIC90: 8, RNG: (2-8)
    fosfomycin:  R(>1024)
    isoniazid:  Res
    metronidazole:  S(MIC50): 1, MIC90: 1, RNG: (0.5-2)
    nitrofurantoin:  Sens
    ranbezolid:  S(MIC50): 0.06, MIC90: 0.125, RNG: (0.06-0.125)
    sulfadiazine:  Res
    sulfadimethoxine:  Res
    sulfamethoxazole:  R(48)
    sulfanilamide:  Res
    trimethoprim:  R(>32)
    SXT:  S(1.5)
    clindamycin:  Var(MIC50): 4, MIC90: >32, RNG: (0.25->32)
    lincomycin:  Sens
    daptomycin:  R(MIC50): >32, MIC90: >32, RNG: (>32)
    colistin:  R(>1024)
    fusidic-acid:  Sens

    References


    SPECIFIC REFERENCES FOR BACTEROIDES THETAIOTAOMICRON
  • Cato1976a - Reinstatement of Species Rank for Bacteroides fragilis, B. ovatus, B. distasonis, B. thetaiotaomicron, and B. vulgatus: Designation of Neotype Strains for Bacteroides fragilis (Veillon and Zuber) Castellani and Chalmers and Bacteroides thetaiotaomicron (Distaso) Castellani and Chalmers.
  • Eggerth1933 - The Bacteroides of Human Feces.
  • Shah1989 - Proposal To Restrict the Genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and Closely Related Species.
  • Wexler2007 - Bacteroides : the Good, the Bad, and the Nitty-Gritty.
  • Yehya2013 - Prevalence and antibiotic susceptibility of Bacteroides fragilis group isolated from stool samples in North Lebanon.
  • Song2010Bergeys - Bacteroides. In Bergey's manual of systematic bacteriology: Vol. 4. The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes
  • Terekhov2018 - Ultrahigh-throughput functional profiling of microbiota communities.
  • Ridlon2006 - Bile salt biotransformations by human intestinal bacteria
  • Bervoets2013 - Differences in gut microbiota composition between obese and lean children: a cross-sectional study
  • Cassir2015 - Clostridium butyricum Strains and Dysbiosis Linked to Necrotizing Enterocolitis in Preterm Neonates
  • Coretti2018 - Gut Microbiota Features in Young Children With Autism Spectrum Disorders
  • Giongo2011 - Toward defining the autoimmune microbiome for type 1 diabetes
  • Gryp2020 - Isolation and Quantification of Uremic Toxin Precursor-Generating Gut Bacteria in Chronic Kidney Disease Patients
  • Kim2018 - Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure
  • Li2019c - Gut Microbiota Differs Between Parkinson's Disease Patients and Healthy Controls in Northeast China
  • Shukla2015 - Fecal Microbiota in Patients with Irritable Bowel Syndrome Compared with Healthy Controls Using Real-Time Polymerase Chain Reaction: An Evidence of Dysbiosis
  • Urban2020 - Altered Fecal Microbiome Years after Traumatic Brain Injury
  • vanderMeulen2019 - Shared gut, but distinct oral microbiota composition in primary Sjögren's syndrome and systemic lupus erythematosus
  • Goldstein2018a - Comparative In Vitro Activities of Relebactam, Imipenem, the Combination of the Two, and Six Comparator Antimicrobial Agents against 432 Strains of Anaerobic Organisms, Including Imipenem-Resistant Strains.
  • Goldstein2013a - Comparative in vitro activities of SMT19969, a new antimicrobial agent, against Clostridium difficile and 350 gram-positive and gram-negative aerobic and anaerobic intestinal flora isolates.
  • Goldstein2013b - Comparative in vitro activities of GSK2251052, a novel boron-containing leucyl-tRNA synthetase inhibitor, against 916 anaerobic organisms.
  • Tyrrell2012 - In vitro activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic, against 377 strains of anaerobic bacteria and 34 strains of Corynebacterium species.
  • Citron2012a - Comparative in vitro activities of LFF571 against Clostridium difficile and 630 other intestinal strains of aerobic and anaerobic bacteria.
  • Goldstein2008 - In vitro activities of doripenem and six comparator drugs against 423 aerobic and anaerobic bacterial isolates from infected diabetic foot wounds.
  • Goldstein2006a - In vitro activity of ceftobiprole against aerobic and anaerobic strains isolated from diabetic foot infections.
  • Citron2003 - In vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, bacitracin, and four other antimicrobials against intestinal anaerobic bacteria.
  • Betriu2001 - In vitro activities of MK-0826 and 16 other antimicrobials against Bacteroides fragilis group strains.
  • Citron2001 - Comparative in vitro activities of ABT-773 against 362 clinical isolates of anaerobic bacteria.
  • Goldstein1999 - In vitro activity of gemifloxacin (SB 265805) against anaerobes.
  • Schaumann1999 - In vitro activities of gatifloxacin, two other quinolones, and five nonquinolone antimicrobials against obligately anaerobic bacteria.
  • Xu2003a - A genomic view of the human-Bacteroides thetaiotaomicron symbiosis.
  • Mahowald2009 - Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla.
  • ...............................
  • GUT MICROBIOME COMPILATIONS AND METASTUDIES FOR BACTEROIDES THETAIOTAOMICRON
  • Almeida2019 - A new genomic blueprint of the human gut microbiota.
  • Benno1984 - The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants.
  • Benno1986 - Comparison of the fecal microflora in rural Japanese and urban Canadians.
  • Benno1989 - Comparison of fecal microflora of elderly persons in rural and urban areas of Japan.
  • Browne2016 - Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation.
  • Byrd2020 - Stability and dynamics of the human gut microbiome and its association with systemic immune traits.
  • Cassir2015 - Clostridium butyricum Strains and Dysbiosis Linked to Necrotizing Enterocolitis in Preterm Neonates
  • Chen2020 - Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine
  • Chen2020a - Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease
  • Chung2016 - Modulation of the human gut microbiota by dietary fibres occurs at the species level.
  • Dubinkina2017 - Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease
  • Finegold1974 - Effect of diet on human fecal flora: comparison of Japanese and American diets
  • Finegold1977 - Fecal microbial flora in Seventh Day Adventist populations and control subjects.
  • Forster2019 - A human gut bacterial genome and culture collection for improved metagenomic analyses.
  • Frank2007 - Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases.
  • Holdeman1976 - Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress.
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Jeong2021 - The effect of taxonomic classification by full-length 16S rRNA sequencing with a synthetic long-read technology
  • Jie2017 - The gut microbiome in atherosclerotic cardiovascular disease
  • King2019 - Baseline human gut microbiota profile in healthy people and standard reporting template.
  • Lagier2016 - Culture of previously uncultured members of the human gut microbiota by culturomics.
  • LeChatelier2013 - Richness of human gut microbiome correlates with metabolic markers
  • MacFarlane2004 - Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis.
  • Mangin2004 - Molecular inventory of faecal microflora in patients with Crohn's disease.
  • McLaughlin2010 - The bacteriology of pouchitis: a molecular phylogenetic analysis using 16S rRNA gene cloning and sequencing.
  • Minerbi2019 - Altered microbiome composition in individuals with fibromyalgia
  • Moore1995 - Intestinal floras of populations that have a high risk of colon cancer
  • New2022 - Collective effects of human genomic variation on microbiome function.
  • Nielsen2014 - MetaHIT Consortium. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.
  • Pfleiderer2013 - Culturomics identified 11 new bacterial species from a single anorexia nervosa stool sample.
  • RajilicStojanovic2014 - The first 1000 cultured species of the human gastrointestinal microbiota.
  • Rothschild2018 - Environment dominates over host genetics in shaping human gut microbiota.
  • Tyakht2013 - Human gut microbiota community structures in urban and rural populations in Russia.
  • Urban2020 - Altered Fecal Microbiome Years after Traumatic Brain Injury
  • Walker2011 - High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease.
  • Wang2005 - Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes.
  • Wang2018 - A metagenome-wide association study of gut microbiota in asthma in UK adults
  • Wang2018a - Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model.
  • Wang2020a - Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents
  • Woodmansey2004 - Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects.
  • Yang2020 - Species-Level Analysis of Human Gut Microbiota With Metataxonomics.
  • Yang2020a - Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families
  • Zeller2014 - Potential of fecal microbiota for early-stage detection of colorectal cancer
  • Zou2019 - 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses.
  • deGoffau2013 - Fecal microbiota composition differs between children with β-cell autoimmunity and those without.
  • ...............................
  • GENERAL REFERENCES FOR BACTEROIDES THETAIOTAOMICRON
  • CCUG - Culture Collection University of Gothenburg - Entire Collection
  • Song2010Bergeys - Bacteroides. In Bergey's manual of systematic bacteriology: Vol. 4. The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes
  • Derrien2010Bergey - Bergey's manual of systematic bacteriology. Vol. 4, The Lentisphaerae. Family Victivallaceae, Genus I. Victivallis
  • Derrien2010aBergey - Bergey's manual of systematic bacteriology. Vol. 4, The Verrucomicrobia. Family Akkermansiaceae, Genus I. Akkermansia
  • Derrien2010 - Mucin-bacterial interactions in the human oral cavity and digestive tract.