Bacteroides xylanisolvens

(aka Bacteroides sp 2 1 16)

Bacteria


General | Carbohydrate O/F | Substrate utilisation | Enzymes | Metabolites | Antibiotics

Overview


  • Bacteroides xylanisolvens, (aka Bacteroides sp 2 1 16), is a Gram-negative, non-spore-forming, strictly anaerobic, non-motile, rod-shaped bacterium. It has been detected in at least 25 gut microbiome compilation studies or metastudies. The DNA G+C content is 42.8%. Bacteroides xylanisolvens is often a widespread coloniser of gut. (Chassard2008; Terekhov2018)



  • This organism has been recovered from human faeces. Pathogenicity status unknown, or very unlikely to be pathogenic. Is a known gut commensal. Robust growth can have positive consequences for gut health.

  • GENERAL CHARACTERISTICS (Chassard2008);
    Character Response
  • Substrates hydrolysed or digested:
  • aesculin;
  • pH
  • Acidity tolerance:
  • doesn't tolerate pH 4.2-5.9; tolerates pH 6-7.2; Grows optimally at pH 6.8.
  • 🌡
  • Temperature tolerance:
  • grows at 25℃; grows at 42℃; Grows optimally at 38℃.
  • H+
  • Acid from carbohydrates usually produced:
  • arabinose; L-arabinose; glucose; mannose; rhamnose; ribose; xylose; glycogen; xylan; cellubiose; lactose; maltose; melezitose; raffinose; sucrose; trehalose; mannitol;
  • Active enzymes:
  • Ala arylamidase; Ala-Phe-Pro arylamidase; alkaline phosphatase; acid phosphatase; N-Ac β-glucosaminidase; esterase C4; fucosidase; α-galactosidase; β-galactosidase; α-glucosidase; β-glucosidase; glutamic acid decarboxylase; Glu-Glu arylamidase; Leu-Gly arylamidase; α-mannosidase; xylosidase;

  • SPECIAL FEATURES (Chassard2008);
    Character Response
  • Metabolites produced:
  • acetate; propionate; succinate;
  • Metabolites not produced:
  • indole;
  • VP test:
  • not active
  • Nitrate:
  • not reduced

  • RESPONSE TO ANTIBIOTICS (Goldstein2018a); (Goldstein2013b);
    Class Active Resistant
  • Penicillins:
  • benzylpenicillin; dicloxacillin; imipenem; meropenem; piperacillin-tazobactam; ticarcillin;
  • amoxicillin; azlocillin; aztreonam; bacampicillin; cloxacillin; oxacillin; piperacillin;
  • Cephalosporins:
  • cefazolin;
  • cefaclor; cefadroxil; cefdinir; cefepime; cefixime; cefmetazole; cefoperazone; cefotaxime; cefotetan; cefotiam; ceftazidime; cefuroxime; cephalothin; moxalactam;
  • Macrolides:
  • azithromycin; clarithromycin; erythromycin; josamycin; roxithromycin; spiramycin;
  • Tetracyclines:
  • chlortetracycline; doxycycline; meclocycline; methacycline; minocycline; oxytetracycline; tetracycline;
  • Quinolines:
  • ciprofloxacin; clinafloxacin; enoxacin; gatifloxacin; nalidixic-acid; pefloxacin; sarafloxacin; sparfloxacin;
  • clavulanic-acid; norfloxacin; pipemidic-acid;
  • Aminoglycosides:
  • amikacin; dihydrostreptomycin; gentamicin; kanamycin; neomycin; sisomicin; spectinomycin; streptomycin; tobramycin;
  • Polypep/ketides:
  • bacitracin; rifabutin; rifampicin; rifapentine;
  • Heterocycles:
  • chloramphenicol; fusidic-acid; metronidazole; nitrofurantoin;
  • isoniazid; sulfadiazine; sulfadimethoxine; sulfamethoxazole; sulfanilamide; trimethoprim;
  • Vancomycins:
  • vancomycin;
  • Miscellaneous antibiotics:
  • lincomycin; linezolid;
  • colistin;

  • NOTES

    This is a common inhabitant of the human gut.

    Fuel sources used:
    It can use fibre, resistant starch, simple sugars (including lactose), protein and mucus for energy.

    Metabolites produced:
    Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, B-glucuronidase, BCAAs, butyrate, GABA, lactate, LPS, propionate, succinate, cobalamin, folate, biotin, riboflavin.

    Metabolites consumed:
    In addition, our genomic analysis indicates that most members of this species do not consume any reported metabolites.

    Disease associations:
    Elevated levels of this species have been observed in patients with gout.

  • References: [1] [2] [3] [4]

  • The novel isolates degraded different types of xylan, and were also able to grow on a variety of carbohydrates. Unlike most other Bacteroides species isolated from the human gut, these isolates were not able to degrade starch. Xylan and sugars were converted by strain XB1AT mainly into acetate, propionate and succinate. [PMID: 18398210]

  • GutFeeling KnowledgeBase COMMENTS [Website]

    This gram-positive, anaerobic organism is part of a xylan-degrading community of bacteria found the in the human gut. [PMID: 18398210]

  • Chassard, C., Delmas, E., Lawson, P. A., & Bernalier-Donadille, A. (2008). Bacteroides xylanisolvens sp. nov., a xylan-degrading bacterium isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 58(Pt 4), 1008–1013.


  • Details


    GENERAL
    Lineage Physiology General Growth Tolerances Hydrol./digest./degr.
    Phylum:  Bacteroidetes Class:  Bacteroidia Order:  Bacteroidales Family:  Bacteroidaceae Genus:  Bacteroides Alt. name:  Bacteroides sp 2 1 16 Gram stain:  neg O2 Relation.:  strictly anaerobic Spore:  No spore Motility:  Sessile Morphology:  Rod
    Health:   Positive
    Source:  human faeces
    DNA G+C(%):  42.8
    Opt. T:  38℃
    Lower T(℃):  25(+)
    High T(℃):  42(+)
    Opt. pH:  6.8
    pH 4.2-5.9:  4.2-5.9(neg)
    pH 6.0-8.0:  6-7.2(+)
    Aesculin:  + Urea:  neg Gelatin:  neg Starch:  neg Hippurate:  neg

    CARBOHYDRATE ACID FORMATION
    Monosaccharide O/F Oligosaccharide O/F Polysaccharide O/F Polyol O/F Other O/F
    Arabinose:  + L-Arabinose:  + Glucose:  + Mannose:  + Rhamnose:  + Ribose:  + D-Tagatose:  neg Xylose:  + Cellubiose:  + Lactose:  + Maltose:  + Melezitose:  + Sucrose:  + Trehalose:  + Cellulose:  neg Dextrin:  neg Glycogen:  + Starch:  neg Xylan:  + D-Arabitol:  neg Glycerol:  vr Mannitol:  + Sorbitol:  vr Salicin:  vr

    SUBSTRATE ASSIMILATION & UTILISATION
    Monosaccharide util/assim Oligosaccharide util/assim Other carboh. util/assim Amino acid util/assim Organic acid util/assim
    Cellulose:  neg Pectin:  w Starch:  neg

    ENZYME ACTIVITY
    Enzymes: General Enzymes: Carbohydrate Enzymes: Protein Enzymes: Arylamidases Enzymes: Esters/fats
    Urease:  neg Ac-β-glcamnd:  + α-Fucosidase:  + α-Galactosidase:  + β-Galactosidase:  + α-Glucosidase:  + β-Glucosidase:  + β-Glucuronidase:  neg α-Mannosidase:  + β-Mannosidase:  neg Xylosidase:  + ArgDH:  neg GluDC:  + AlanineAA:  + AlaPheProAA:  + ArgAA:  neg GluGluAA:  + GlyAA:  neg HisAA:  neg LeuAA:  neg LeuGlyAA:  + ProAA:  neg PyrrolidAA:  neg PheAA:  neg PyrogluAA:  neg SerAA:  neg TyrAA:  neg AlkalineP:  + AcidP:  + Esterase(C4):  + EstLip(C8):  neg Lipase(C14):  neg

    METABOLITES - PRODUCTION & USE
    Fuel Usable Metabolites Metabolites Released Special Products Compounds Produced

    Fibre, Resistant Starch, Mucus, Simple Sugars

    Branched-Chain AA, Cobalamin, Folate, Biotin, Riboflavin, Acetate, Lactate, Butyrate, Succinate, GABA

    Beta-glucuronidase, LPS Antigen

    Acetate:  + Propionate:  + Succinate:  + Indole:  neg

    ANTIBIOTICS ℞
    Penicillins & Penems (μg/mL) Cephalosporins (μg/mL) Aminoglycosides (μg/mL) Macrolides (μg/mL) Quinolones (μg/mL)
    amoxicillin:  R(32)
    ampicillin:  RNG: (8)
    amp-sulb:  Var(MIC50): 4, MIC90: 16, RNG: (1–32)
    azlocillin:  Res
    aztreonam:  Res
    bacampicillin:  Res
    benzyl-pen:  Sens
    cloxacillin:  Res
    dicloxacillin:  Sens
    mezlocillin:  RNG: (8)
    oxacillin:  R(>256)
    penicillin:  RNG: (4)
    piperacillin:  R(12)
    piper-taz:  S(MIC50): 2, MIC90: 8, RNG: (0.06–16)
    ticarcillin:  Sens
    imipenem:  S(MIC50): 0.5, MIC90: 2, RNG: (0.125–2)
    meropenem:  S(MIC50): 0.5, MIC90: 1, RNG: (0.125–32)
    cefaclor:  Res
    cefadroxil:  Res
    cefazolin:  Sens
    cefdinir:  Res
    cefepime:  Res
    cefixime:  Res
    cefmetazole:  Res
    cefoperazone:  Res
    cefotaxime:  R(>32)
    cefotetan:  Res
    cefotiam:  Res
    cefoxitin:  Var(MIC50): 16, MIC90: 64, RNG: (4–64)
    ceftazidime:  R(MIC50): >128, MIC90: >128, RNG: (16–>128)
    cefuroxime:  Res
    cephalothin:  Res
    moxalactam:  Res
    amikacin:  Res
    dihydrostrept:  Res
    gentamicin:  Res
    kanamycin:  Res
    neomycin:  Res
    sisomicin:  Res
    spectinomycin:  Res
    streptomycin:  Res
    tobramycin:  R(>1024)
    azithromycin:  S(8)
    erythromycin:  S(3)
    clarithromycin:  S(0.75)
    roxithromycin:  Sens
    spiramycin:  S(4)
    josamycin:  Sens
    linezolid:  Sens
    ciprofloxacin:  S(8)
    clavulanate:  Res
    clinafloxacin:  Sens
    enoxacin:  Sens
    gatifloxacin:  S(0.2)
    moxifloxacin:  Var(MIC50): 2, MIC90: >16, RNG: (0.25–>16)
    nalidixic-acid:  Sens
    norfloxacin:  R(>256)
    ofloxacin:  Var(MIC50): 5), MIC90: Var(5
    pefloxacin:  Sens
    pipemidic_acid:  Res
    sarafloxacin:  Sens
    sparfloxacin:  Sens
    Tetracyclines (μg/mL) Vancomycin Class (μg/mL) Polypep/ketides (μg/mL) Heterocycles (μg/mL) Other (μg/mL)
    doxycycline:  S(2)
    chlortetracycline:  Sens
    meclocycline:  Sens
    methacycline:  Sens
    minocycline:  Sens
    oxytetracycline:  Sens
    tetracycline:  Sens
    tigecycline:  Var(MIC50): 0.5, MIC90: 8, RNG: (0.125–32)
    vancomycin:  Sens
    bacitracin:  Sens
    rifabutin:  Sens
    rifampicin:  Sens
    rifapentine:  Sens
    chloramphenicol:  Sens
    isoniazid:  Res
    metronidazole:  S(MIC50): 2, MIC90: 2, RNG: (0.5–2)
    nitrofurantoin:  Sens
    sulfadiazine:  Res
    sulfadimethoxine:  Res
    sulfamethoxazole:  R(96)
    sulfanilamide:  Res
    trimethoprim:  Res
    clindamycin:  Var(MIC50): 2, MIC90: >128, RNG: (0.06–>128)
    lincomycin:  Sens
    colistin:  Res
    fusidic-acid:  Sens

    References


    SPECIFIC REFERENCES FOR BACTEROIDES XYLANISOLVENS
  • Chassard2008 - Bacteroides xylanisolvens sp. nov., a xylan-degrading bacterium isolated from human faeces.
  • Terekhov2018 - Ultrahigh-throughput functional profiling of microbiota communities.
  • Feng2015 - Gut microbiome development along the colorectal adenoma-carcinoma sequence
  • Coretti2018 - Gut Microbiota Features in Young Children With Autism Spectrum Disorders
  • Hoffman2014 - Escherichia coli dysbiosis correlates with gastrointestinal dysfunction in children with cystic fibrosis
  • Huang2019a - Metagenome-wide association study of the alterations in the intestinal microbiome composition of ankylosing spondylitis patients and the effect of traditional and herbal treatment
  • MayaLucas2019 - The gut microbiome of Mexican children affected by obesity
  • Ventura2019 - Gut microbiome of treatment-naïve MS patients of different ethnicities early in disease course
  • Laue2020 - Prospective associations of the infant gut microbiome and microbial function with social behaviors related to autism at age 3 years
  • Goldstein2018a - Comparative In Vitro Activities of Relebactam, Imipenem, the Combination of the Two, and Six Comparator Antimicrobial Agents against 432 Strains of Anaerobic Organisms, Including Imipenem-Resistant Strains.
  • Goldstein2013b - Comparative in vitro activities of GSK2251052, a novel boron-containing leucyl-tRNA synthetase inhibitor, against 916 anaerobic organisms.
  • ...............................
  • GUT MICROBIOME COMPILATIONS AND METASTUDIES FOR BACTEROIDES XYLANISOLVENS
  • Almeida2019 - A new genomic blueprint of the human gut microbiota.
  • Browne2016 - Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation.
  • Byrd2020 - Stability and dynamics of the human gut microbiome and its association with systemic immune traits.
  • Chen2020 - Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine
  • Chen2020a - Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease
  • Chung2019 - Impact of carbohydrate substrate complexity on the diversity of the human colonic microbiota.
  • Dubinkina2017 - Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease
  • Forster2019 - A human gut bacterial genome and culture collection for improved metagenomic analyses.
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Jie2017 - The gut microbiome in atherosclerotic cardiovascular disease
  • King2019 - Baseline human gut microbiota profile in healthy people and standard reporting template.
  • Lagier2016 - Culture of previously uncultured members of the human gut microbiota by culturomics.
  • LeChatelier2013 - Richness of human gut microbiome correlates with metabolic markers
  • McLaughlin2010 - The bacteriology of pouchitis: a molecular phylogenetic analysis using 16S rRNA gene cloning and sequencing.
  • New2022 - Collective effects of human genomic variation on microbiome function.
  • RajilicStojanovic2014 - The first 1000 cultured species of the human gastrointestinal microbiota.
  • Rothschild2018 - Environment dominates over host genetics in shaping human gut microbiota.
  • Tyakht2013 - Human gut microbiota community structures in urban and rural populations in Russia.
  • Urban2020 - Altered Fecal Microbiome Years after Traumatic Brain Injury
  • Walker2011 - High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease.
  • Wang2018 - A metagenome-wide association study of gut microbiota in asthma in UK adults
  • Wang2018a - Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model.
  • Wang2020a - Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents
  • Yang2020 - Species-Level Analysis of Human Gut Microbiota With Metataxonomics.
  • Yang2020a - Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families
  • Zeller2014 - Potential of fecal microbiota for early-stage detection of colorectal cancer
  • Zou2019 - 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses.
  • ...............................
  • GENERAL REFERENCES FOR BACTEROIDES XYLANISOLVENS
  • CCUG - Culture Collection University of Gothenburg - Entire Collection