General | Carbohydrate O/F | Substrate utilisation | Enzymes | Metabolites | Antibiotics

Overview


  • Barnesiella intestinihominis is a Gram-negative, non-spore-forming, strictly anaerobic, non-motile, rod-shaped bacterium. It has been detected in at least 16 gut microbiome compilation studies or metastudies. The DNA G+C content is 45.5%. Barnesiella intestinihominis is a common gut coloniser. (Morotomi2008)



  • This organism has been recovered from human faeces (Alkhalil2017). Pathogenicity status unknown, or very unlikely to be pathogenic. Is a known gut commensal.

  • GENERAL CHARACTERISTICS (Morotomi2008);
    Character Response
  • Substrates hydrolysed or digested:
  • aesculin;
  • H+
  • Acid from carbohydrates usually produced:
  • glucose; mannose; lactose; maltose;
  • Active enzymes:
  • Ala arylamidase; alkaline phosphatase; acid phosphatase; N-Ac β-glucosaminidase; β-galactosidase; α-glucosidase; glutamic acid decarboxylase; Leu-Gly arylamidase; naphthol-ASBI-P;
  • ±
  • Strain-dependent active enzymes:
  • α-galactosidase; β-glucosidase;

  • SPECIAL FEATURES (Morotomi2008);
    Character Response
  • Metabolites produced:
  • acetate; succinate;
  • Metabolites not produced:
  • indole;
  • Nitrate:
  • not reduced

  • NOTES

    This is a common inhabitant of the human gut.

    Fuel sources used:
    It can use simple sugars (including lactose), protein and mucus for energy. This species has the ability to use mucus as its only source of energy.

    Metabolites produced:
    Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, BCAAs, GABA, LPS, propionate, succinate, folate, biotin, riboflavin.

    Metabolites consumed:
    In addition, our genomic analysis indicates that most members of this species do not consume any reported metabolites.

    Emerging research:
    This species has been identified as improving the efficacy of the chemotherapy drug cyclophosphamide.

  • References: [1] [2] [3]

  • Morotomi, M., Nagai, F., Sakon, H., & Tanaka, R. (2008). Dialister succinatiphilus sp. nov. and Barnesiella intestinihominis sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 58(Pt 12), 2716–2720.


  • Details


    GENERAL
    Lineage Physiology General Growth Tolerances Hydrol./digest./degr.
    Phylum:  Bacteroidetes Class:  Bacteroidia Order:  Bacteroidales Family:  Barnesiellaceae Genus:  Barnesiella Gram stain:  neg O2 Relation.:  strictly anaerobic Spore:  No spore Motility:  Sessile Morphology:  Rod
    Health:  Unknown
    Source:  human faeces (Alkhalil2017)
    DNA G+C(%):  45.5
    Aesculin:  + Urea:  neg Gelatin:  neg

    CARBOHYDRATE ACID FORMATION
    Monosaccharide O/F Oligosaccharide O/F Polysaccharide O/F Polyol O/F Other O/F
    L-Arabinose:  neg Glucose:  + Mannose:  + Rhamnose:  neg Xylose:  neg Cellubiose:  w Lactose:  + Maltose:  + Melezitose:  neg Sucrose:  neg Trehalose:  neg Glycerol:  neg Mannitol:  neg Sorbitol:  neg Salicin:  neg

    ENZYME ACTIVITY
    Enzymes: General Enzymes: Carbohydrate Enzymes: Protein Enzymes: Arylamidases Enzymes: Esters/fats
    Oxidase:  neg Catalase:  neg Urease:  neg α-Arab:  neg Ac-β-glcamnd:  + α-Fucosidase:  neg α-Galactosidase:  d β-Galactosidase:  + α-Glucosidase:  + β-Glucosidase:  d β-Glucuronidase:  neg α-Mannosidase:  neg ArgDH:  neg Chymotrypsin:  neg GluDC:  + Trypsin:  neg AlanineAA:  + ArgAA:  neg CystineAA:  neg GluGluAA:  neg GlyAA:  neg HisAA:  neg LeuAA:  neg LeuGlyAA:  + PyrrolidAA:  neg PyrogluAA:  neg SerAA:  neg TyrAA:  neg ValAA:  neg AlkalineP:  + AcidP:  + Esterase(C4):  w EstLip(C8):  w Lipase:  neg

    METABOLITES - PRODUCTION & USE
    Fuel Usable Metabolites Metabolites Released Special Products Compounds Produced

    Mucus, Simple Sugars, Lactose, Protein

    None/Unknown

    Branched-Chain AA, Folate, Biotin, Riboflavin, Acetate, Propionate, Succinate, GABA

    LPS Antigen

    Acetate:  + Succinate:  + Indole:  neg

    References


    SPECIFIC REFERENCES FOR BARNESIELLA INTESTINIHOMINIS
  • Daillere2016 - Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects.
  • Morotomi2008 - Dialister succinatiphilus sp. nov. and Barnesiella intestinihominis sp. nov., isolated from human faeces.
  • Gao2020 - Functional Microbiomics Reveals Alterations of the Gut Microbiome and Host Co-Metabolism in Patients With Alcoholic Hepatitis
  • Chen2020a - Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease
  • DeAngelis2013 - Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified
  • Dong2020a - The Association of Gut Microbiota With Idiopathic Central Precocious Puberty in Girls
  • Kim2020a - Altered Gut Microbiome Profile in Patients With Pulmonary Arterial Hypertension
  • Ying2020 - Gut microbiota and Chinese medicine syndrome: altered fecal microbiotas in spleen (Pi)-deficient patients
  • ...............................
  • GUT MICROBIOME COMPILATIONS AND METASTUDIES FOR BARNESIELLA INTESTINIHOMINIS
  • Byrd2020 - Stability and dynamics of the human gut microbiome and its association with systemic immune traits.
  • Chen2020 - Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine
  • Chen2020a - Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease
  • Chung2016 - Modulation of the human gut microbiota by dietary fibres occurs at the species level.
  • Chung2019 - Impact of carbohydrate substrate complexity on the diversity of the human colonic microbiota.
  • Dubinkina2017 - Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease
  • Forster2019 - A human gut bacterial genome and culture collection for improved metagenomic analyses.
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Lagier2016 - Culture of previously uncultured members of the human gut microbiota by culturomics.
  • McLaughlin2010 - The bacteriology of pouchitis: a molecular phylogenetic analysis using 16S rRNA gene cloning and sequencing.
  • Minerbi2019 - Altered microbiome composition in individuals with fibromyalgia
  • Pfleiderer2013 - Culturomics identified 11 new bacterial species from a single anorexia nervosa stool sample.
  • RajilicStojanovic2014 - The first 1000 cultured species of the human gastrointestinal microbiota.
  • Rothschild2018 - Environment dominates over host genetics in shaping human gut microbiota.
  • Yang2020 - Species-Level Analysis of Human Gut Microbiota With Metataxonomics.
  • Yang2020a - Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families
  • Zou2019 - 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses.
  • ...............................
  • GENERAL REFERENCES FOR BARNESIELLA INTESTINIHOMINIS
  • Alkhalil2017 - Bacterial involvements in ulcerative colitis: molecular and microbiological studies