General | Carbohydrate O/F | Substrate utilisation | Enzymes | Metabolites | Antibiotics

Overview


  • Bifidobacterium adolescentis is a Gram-positive, non-spore-forming, anaerobic, non-motile, rod-shaped bacterium. It has been detected in at least 35 gut microbiome compilation studies or metastudies. The DNA G+C content is 61.2%. Bifidobacterium adolescentis is often a widespread coloniser of gut. (Browne2016; Killer2013; Kim2010a; Scardovi1971)



  • This organism has been recovered from human faeces. The risk classification (www.baua.de) for this organism is 1, i.e., low risk of infection and spread (notes: opportunistic in immunocompromised patients). Can cause opportunistic infections, particularly in immunocompromised people. Is a known gut commensal. Robust growth can have positive consequences for gut health.

  • QUIRKS
  • Produces GABA (Sahab2020). Found in human breast milk (Jeurink2013).

  • GENERAL CHARACTERISTICS (Killer2013); (Kim2010a); (Scardovi1971);
    Character Response
  • Substrates hydrolysed or digested:
  • aesculin;
  • H+
  • Acid from carbohydrates usually produced:
  • L-arabinose; glucose; xylose; amygdalin; starch; xylan; gentiobiose; lactose; maltose; melibiose; raffinose; sucrose; D-turanose; mannitol;
  • ±
  • Strain-dependent acid from carbs:
  • fructose; galactose; mannose; ribose; glycogen; inulin; cellubiose; trehalose; sorbitol; arbutin; 5-ketogluconate; α-methyl glucoside; salicin;
  • Substrates assimilated or utilised:
  • melibiose;
  • Active enzymes:
  • Ala-Phe-Pro arylamidase; acid phosphatase; Arg arylamidase; α-galactosidase; β-galactosidase; α-glucosidase; β-glucosidase; Gly arylamidase; His arylamidase; Leu arylamidase; Pro arylamidase;
  • ±
  • Strain-dependent active enzymes:
  • arabinosidase; esterase lipase C8; Phe arylamidase; Ser arylamidase; Tyr arylamidase; naphthol-ASBI-P;

  • SPECIAL FEATURES (Killer2013); (Kim2010a); (Scardovi1971);
    Character Response
  • Metabolites produced:
  • acetate; lactate;
  • Metabolites not produced:
  • indole;
  • VP test:
  • not active
  • Nitrate:
  • not reduced

  • RESPONSE TO ANTIBIOTICS (Goldstein2003); (Matteuzzi1983); (Goldstein2013); (Goldstein2013a); (Citron2012a); (Citron2003);
    Class Active Resistant
  • Penicillins:
  • amoxicillin; amoxicillin-clavulanic acid; ampicillin; ampicillin-sulbactam; azlocillin; bacampicillin; benzylpenicillin; cloxacillin; dicloxacillin; imipenem; meropenem; oxacillin; penicillin G; piperacillin; piperacillin-tazobactam; ticarcillin;
  • aztreonam;
  • Cephalosporins:
  • cefaclor; cefazolin; cefdinir; cefepime; cefixime; cefmetazole; cefoperazone; cefotaxime; cefotetan; cefotiam; cefoxitin; ceftazidime; cefuroxime; cephalothin; moxalactam;
  • cefadroxil;
  • Macrolides:
  • azithromycin; clarithromycin; erythromycin; fidaxomicin; josamycin; pristinamycin; quinupristin-dalfopristin; roxithromycin; spiramycin; telithromycin;
  • Tetracyclines:
  • chlortetracycline; doxycycline; meclocycline; methacycline; minocycline; oxytetracycline; tetracycline;
  • Quinolines:
  • ciprofloxacin; clinafloxacin; gatifloxacin; moxifloxacin; norfloxacin; ofloxacin; pipemidic-acid; sarafloxacin; sparfloxacin;
  • clavulanic-acid; enoxacin; nalidixic-acid; pefloxacin;
  • Aminoglycosides:
  • amikacin; dihydrostreptomycin; gentamicin; kanamycin; neomycin; sisomicin; spectinomycin; streptomycin; tobramycin;
  • Polypep/ketides:
  • bacitracin; rifabutin; rifampicin; rifapentine;
  • Heterocycles:
  • chloramphenicol; fusidic-acid; trimethoprim;
  • isoniazid; sulfadiazine; sulfadimethoxine; sulfamethoxazole; sulfanilamide;
  • Vancomycins:
  • vancomycin; teicoplanin;
  • Miscellaneous antibiotics:
  • daptomycin; lincomycin; linezolid; pristinamycin; telithromycin;
  • colistin; polymyxin B;

  • NOTES

    This is a common and beneficial inhabitant of the gut.

    Fuel sources used:
    It can use fibre, resistant starch, and simple sugars (including lactose) for energy.

    Metabolites produced:
    Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, BCAAs, GABA, lactate, propionate, succinate, folate.

    Metabolites consumed:
    In addition, our genomic analysis indicates that most members of this species do not consume any reported metabolites.

    Emerging research:
    Low levels of this species have been observed in Crohn's disease, obesity and celiac disease.

  • References: [1] [2] [3] [4]

  • Bifidobacterium adolescentis ATCC 15703, a gut bacteria, has been associated with allergic individuals in some clinical studies. [PMID: 29633635]

    Has extensive capabilities to metabolize diet-derived glycans, in particular starch and starch-related/derived poly- and oligo-saccharides, such as amylopectin, pullulan, maltotriose and maltodextrin. [PMID: 27035119] The analysis of the 2,203,222-bp genome of Bifidobacterium adolescentis 22L revealed a nutrient acquisition strategy that targets diet/plant-derived glycans, in particular starch and starch-like carbohydrates. Starch-like carbohydrates were shown to support the growth of B. adolescentis 22L. [PMID: 25063659] Isolated from human milk. [PMID: 27035119]

    Bifidobacterium adolescentis administration to rats significantly lowered rates of bacterial translocation. Bifidobacteria have also been associated with metabolic improvements considered to be associated with inflammation, including insulin sensitivity, white fat accumulation, liver weight, reactive oxygen species, nuclear factor _B activation, and reduced markers of inflammation, and high-density lipoprotein (HDL) plasma cholesterol levels. [PMID: 29954454] The colon region of the human gut contains mainly anaerobic microbes, such as Bifidobacterium spp. The proportion of bifidobacteria is known to play a significant role in the maintenance of good health, but this role diminishes as the individual reaches adulthood1. [PMID: 30093677] This strain was isolated from human feces of a centenarian. [PMID: 25678139]

    Bifidobacteria are common inhabitants of the human gastrointestinal tract that, despite a long history of research, have not shown any pathogenic potential whatsoever. By contrast, some bifidobacteria are associated with a number of health-related benefits for the host. The reported beneficial effects of bifidobacteria include competitive exclusion of pathogens, alleviation of symptoms of irritable bowel syndrome and inflammatory bowel disease, and modulation of intestinal and systemic immune responses. Based on these effects, bifidobacteria are widely used as probiotics by pharmaceutical and dairy industries. [PMID: 27547201] This species is a normal inhabitant of the healthy human gut. Newborns, especially those that are breast-fed, are colonized with Bifidobacteria within days after birth. This species was first isolated from the feces of a breast-fed infant. The population of these bacteria in the colon appears to be relatively stable until late adulthood when it appears to decline. In one comprehensive 16S rDNA sequence-based enumeration of the colonic microbiota of three healthy adult humans it represents, on average, 0.008% of all 16S rDNA sequences and 4.302% of the sequences in its division (Eckburg et. al. (2005)). The bifidobacteria population is influenced by a number of factors, including diet, antibiotics and stress. Their name is derived from the observation that they often exist in a Y-shaped or bifid form. They are saccharolytic organisms that produce acetic and lactic acids without generation of CO2, except during degradation of gluconate. [https://www.ncbi.nlm.nih.gov/genome/?term=Bifidobacterium%20adolescentis[Organism]&cmd=DetailsSearch]

  • GutFeeling KnowledgeBase COMMENTS [Website]

    Bifidobacterium adolescentis represents 0.008% of the total number of microbial 16S rDNA sequences found in the gut. [UP000008702]

  • Reuter, G. (1963). Comparative studies on the bifidus flora in the feces of infants and adults. With a contribution to classification and nomenclature of bifidus strains. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. 1. Abt. Medizinisch-hygienische Bakteriologie, Virusforschung und Parasitologie. Originale, 191, 486–507.


  • Details


    GENERAL
    Lineage Physiology General Growth Tolerances Hydrol./digest./degr.
    Phylum:  Actinobacteria Class:  Actinomycetia Order:  Bifidobacteriales Family:  Bifidobacteriaceae Genus:  Bifidobacterium Gram stain:  + O2 Relation.:  anaerobic Spore:  No spore Motility:  Sessile Morphology:  Rod
    Health:   Positive
    Source:  human faeces
    DNA G+C(%):  61.2
    Aesculin:  + Urea:  neg Gelatin:  neg Hippurate:  neg

    CARBOHYDRATE ACID FORMATION
    Monosaccharide O/F Oligosaccharide O/F Polysaccharide O/F Polyol O/F Other O/F
    D-Arabinose:  neg L-Arabinose:  + Fructose:  d Fucose:  neg D-Fucose:  neg Galactose:  d Glucose:  + Mannose:  d D-Lyxose:  neg Rhamnose:  neg Ribose:  d Sorbose:  neg D-Tagatose:  neg Xylose:  + L-Xylose:  neg Cellubiose:  d Gentiobiose:  + Lactose:  + Maltose:  + Melezitose:  neg Melibiose:  + Sucrose:  + Trehalose:  d Turanose:  + Amygdalin:  + Dextrin:  neg Glycogen:  d Inulin:  d Starch:  d(+) Pectin:  neg Xylan:  d(+) Adonitol:  neg D-Arabitol:  neg L-Arabitol:  neg Dulcitol:  neg Erythritol:  neg Glycerol:  neg Inositol:  neg Mannitol:  + Sorbitol:  d Xylitol:  neg Arbutin:  d Gluconate:  neg 2-Ketogluconate:  neg 5-Ketogluconate:  d Me-α-D-Glc:  d Me-α-D-Mann:  neg Me-Xyloside:  neg NAc-α-GA:  neg Salicin:  d

    SUBSTRATE ASSIMILATION & UTILISATION
    Monosaccharide util/assim Oligosaccharide util/assim Other carboh. util/assim Amino acid util/assim Organic acid util/assim
    Melibiose:  +

    ENZYME ACTIVITY
    Enzymes: General Enzymes: Carbohydrate Enzymes: Protein Enzymes: Arylamidases Enzymes: Esters/fats
    Oxidase:  neg Catalase:  neg Urease:  neg α-Arab:  d Ac-β-glcamnd:  neg α-Fucosidase:  neg α-Galactosidase:  + β-Galactosidase:  + α-Glucosidase:  + β-Glucosidase:  + β-Glucuronidase:  neg α-Mannosidase:  neg β-Mannosidase:  neg ArgDH:  neg Chymotrypsin:  neg GluDC:  neg Trypsin:  neg AlanineAA:  neg AlaPheProAA:  + ArgAA:  + CystineAA:  neg GluGluAA:  neg GlyAA:  + HisAA:  + LeuAA:  + LeuGlyAA:  neg ProAA:  + PyrrolidAA:  neg PheAA:  d PyrogluAA:  neg SerAA:  d TyrAA:  d ValAA:  neg AlkalineP:  neg AcidP:  + Esterase(C4):  neg EstLip(C8):  d Lipase(C14):  neg

    METABOLITES - PRODUCTION & USE
    Fuel Usable Metabolites Metabolites Released Special Products Compounds Produced

    Fibre, Complex Polysacc., Starch, Resistant Starch, Simple Sugars, Lactose

    None/Unknown

    Branched-Chain AA, Folate, Lactate, Propionate, Succinate, GABA

    None/Unknown

    Acetate:  + Lactate:  + Indole:  neg

    ANTIBIOTICS ℞
    Penicillins & Penems (μg/mL) Cephalosporins (μg/mL) Aminoglycosides (μg/mL) Macrolides (μg/mL) Quinolones (μg/mL)
    amoxicillin:  Sens
    Augmentin:  S(MIC50): 0.032, MIC90: 0.5, RNG: (0.016-0.5)
    ampicillin:  S(MIC50): 0.06, MIC90: 0.25, RNG: (0.06–1)
    amp-sulb:  S(MIC50): 0.06, MIC90: 0.125, RNG: (0.06–1)
    azlocillin:  Sens
    aztreonam:  Res
    bacampicillin:  Sens
    benzyl-pen:  Sens
    cloxacillin:  Sens
    dicloxacillin:  Sens
    oxacillin:  Sens
    penicillin:  Var(MIC50): 0.125, MIC90: >32, RNG: (0.016->32)
    penicillin_G:  S(MIC50): 0.17, MIC90: 0.35, RNG: (0.02-0.60)
    piperacillin:  Sens
    piper-taz:  S(MIC50): 0.06, MIC90: 0.5, RNG: (≤0.03-1)
    ticarcillin:  Sens
    imipenem:  S(MIC50): 0.06, MIC90: 0.125, RNG: (0.015–0.25)
    meropenem:  Sens
    cefaclor:  Sens
    cefadroxil:  Res
    cefazolin:  Sens
    cefdinir:  Sens
    cefepime:  Sens
    cefixime:  Sens
    cefmetazole:  Sens
    cefoperazone:  Sens
    cefotaxime:  Sens
    cefotetan:  Sens
    cefotiam:  Sens
    cefoxitin:  S(MIC50): 1, MIC90: 4, RNG: (0.06–32)
    ceftazidime:  Sens
    cefuroxime:  Sens
    cephalothin:  Sens
    moxalactam:  Sens
    amikacin:  Res
    dihydrostrept:  Res
    gentamicin:  R(MIC50): 175, MIC90: 500, RNG: (40->500)
    kanamycin:  R(MIC50): 261, MIC90: 501, RNG: (100->1500)
    neomycin:  R(MIC50): 36, MIC90: 397, RNG: (20-500)
    sisomicin:  Res
    spectinomycin:  Res
    streptomycin:  R(20-1500)
    tobramycin:  Res
    azithromycin:  Sens
    erythromycin:  S(MIC50): 0.06, MIC90: 0.06, RNG: (≤0.03-0.25)
    fidaxomicin:  S(MIC50): 0.125, MIC90: 0.125, RNG: (0.03–0.25)
    clarithromycin:  Sens
    pristinamycin:  Sens
    quin-dalf:  S(MIC50): 1, MIC90: 1, RNG: (0.25-2)
    roxithromycin:  Sens
    spiramycin:  Sens
    telithromycin:  Sens
    josamycin:  Sens
    linezolid:  S(MIC50): 1, MIC90: 1, RNG: (0.25–2)
    ciprofloxacin:  Sens
    clavulanate:  Res
    clinafloxacin:  Sens
    enoxacin:  Res
    gatifloxacin:  Sens
    levofloxacin:  Var(MIC50): 0.5, MIC90: 16, RNG: (0.25->32)
    moxifloxacin:  S(MIC50): 0.125, MIC90: 1, RNG: (0.064-4)
    nalidixic-acid:  R(>200)
    norfloxacin:  Sens
    ofloxacin:  Sens
    pefloxacin:  Res
    pipemidic_acid:  S,R
    sarafloxacin:  Sens
    sparfloxacin:  Sens
    Tetracyclines (μg/mL) Vancomycin Class (μg/mL) Polypep/ketides (μg/mL) Heterocycles (μg/mL) Other (μg/mL)
    doxycycline:  S(MIC50): 0.25, MIC90: 4, RNG: (0.032-16)
    chlortetracycline:  Sens
    meclocycline:  Sens
    methacycline:  Sens
    minocycline:  Sens
    oxytetracycline:  Sens
    tetracycline:  S(MIC50): 3, MIC90: 3, RNG: (3)
    teicoplanin:  S(MIC50): 0.25, MIC90: 0.5, RNG: (0.125–0.5)
    vancomycin:  S(MIC50): 0.5, MIC90: 1, RNG: (0.25-1)
    bacitracin:  S(MIC50): <0.05, MIC90: 0.47, RNG: (0.05-0.60)
    rifabutin:  Sens
    rifampicin:  Sens
    rifapentine:  Sens
    chloramphenicol:  S(MIC50): 2.6, MIC90: 4.3, RNG: (2.0-5.0)
    isoniazid:  Res
    metronidazole:  Var(MIC50): 8, MIC90: >64, RNG: (1–>64)
    nitrofurantoin:  Var(MIC50): <27, MIC90: 73, RNG: (15-100)
    sulfadiazine:  Res
    sulfadimethoxine:  Res
    sulfamethoxazole:  Res
    sulfanilamide:  Res
    trimethoprim:  Sens
    clindamycin:  Var(MIC50): 0.032, MIC90: >256, RNG: (0.016->256)
    lincomycin:  S(MIC50): 0.76, MIC90: 2.9, RNG: (0.30-6)
    daptomycin:  S(MIC50): 0.25, MIC90: 0.5, RNG: (≤0.03-1)
    colistin:  Res
    polymyxin_B:  R(>700)
    fusidic-acid:  Sens

    References


    SPECIFIC REFERENCES FOR BIFIDOBACTERIUM ADOLESCENTIS
  • Goldstein2003 - In Vitro Activities of Daptomycin, Vancomycin, Quinupristin- Dalfopristin, Linezolid, and Five Other Antimicrobials against 307 Gram-Positive Anaerobic and 31 Corynebacterium Clinical Isolates.
  • Browne2016 - Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation.
  • Killer2013 - Reclassification of Bifidobacterium stercoris Kim et al. 2010 as a later heterotypic synonym of Bifidobacterium adolescentis.
  • Kim2010a - Bifidobacterium stercoris sp. nov., isolated from human faeces.
  • Matteuzzi1983 - Antimicrobial susceptibility of Bifidobacterium.
  • Scardovi1971 - Deoxyribonucleic Acid Homology Relationships Among Species of the Genus Bifidobacterium
  • Mitsuoka1990 - Bifidobacteria and their role in human health.
  • Salyers1977 - Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon
  • Bojovic2020 - Gut Microbiota Dysbiosis Associated With Altered Production of Short Chain Fatty Acids in Children With Neurodevelopmental Disorders
  • Ridlon2006 - Bile salt biotransformations by human intestinal bacteria
  • Gao2020 - Functional Microbiomics Reveals Alterations of the Gut Microbiome and Host Co-Metabolism in Patients With Alcoholic Hepatitis
  • Chakravarthy2018 - Alterations in the gut bacterial microbiome in fungal Keratitis patients
  • Chen2020 - Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine
  • DeAngelis2013 - Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified
  • Debyser2016 - Faecal proteomics: A tool to investigate dysbiosis and inflammation in patients with cystic fibrosis
  • Finegold2010 - Pyrosequencing study of fecal microflora of autistic and control children
  • GallardoBecerra2020 - Metatranscriptomic analysis to define the Secrebiome, and 16S rRNA profiling of the gut microbiome in obesity and metabolic syndrome of Mexican children
  • Hedin2014 - Altered intestinal microbiota and blood T cell phenotype are shared by patients with Crohn's disease and their unaffected siblings
  • Hevia2016 - Allergic Patients with Long-Term Asthma Display Low Levels of Bifidobacterium adolescentis
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Huang2019 - Analysis of microbiota in elderly patients with Acute Cerebral Infarction
  • Ignacio2016 - Correlation between body mass index and faecal microbiota from children
  • Jackson2016 - Signatures of early frailty in the gut microbiota
  • Joossens2011 - Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives
  • KowalskaDuplaga2019 - Differences in the intestinal microbiome of healthy children and patients with newly diagnosed Crohn's disease
  • Le2013 - Alterations in fecal Lactobacillus and Bifidobacterium species in type 2 diabetic patients in Southern China population
  • Maji2018 - Gut microbiome contributes to impairment of immunity in pulmonary tuberculosis patients by alteration of butyrate and propionate producers
  • Miragoli2017 - Impact of cystic fibrosis disease on archaea and bacteria composition of gut microbiota
  • Nobili2018 - Bifidobacteria and lactobacilli in the gut microbiome of children with non-alcoholic fatty liver disease: which strains act as health players?
  • Ouwehand2001 - Differences in Bifidobacterium flora composition in allergic and healthy infants
  • Scanlan2012 - Gut dysbiosis in cystic fibrosis
  • Tang2018 - 16S rRNA gene sequencing reveals altered composition of gut microbiota in individuals with kidney stones
  • Xu2019 - Altered gut microbiota and mucosal immunity in patients with schizophrenia
  • Zheng2020a - Specific gut microbiome signature predicts the early-stage lung cancer
  • Zhu2020 - Metagenome-wide association of gut microbiome features for schizophrenia
  • Laue2020 - Prospective associations of the infant gut microbiome and microbial function with social behaviors related to autism at age 3 years
  • Luna2016 - Distinct Microbiome-Neuroimmune Signatures Correlate With Functional Abdominal Pain in Children With Autism Spectrum Disorder.
  • Goldstein2013 - In vitro activity of Biapenem plus RPX7009, a carbapenem combined with a serine β-lactamase inhibitor, against anaerobic bacteria.
  • Goldstein2013a - Comparative in vitro activities of SMT19969, a new antimicrobial agent, against Clostridium difficile and 350 gram-positive and gram-negative aerobic and anaerobic intestinal flora isolates.
  • Citron2012a - Comparative in vitro activities of LFF571 against Clostridium difficile and 630 other intestinal strains of aerobic and anaerobic bacteria.
  • Citron2003 - In vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, bacitracin, and four other antimicrobials against intestinal anaerobic bacteria.
  • ...............................
  • GUT MICROBIOME COMPILATIONS AND METASTUDIES FOR BIFIDOBACTERIUM ADOLESCENTIS
  • Almeida2019 - A new genomic blueprint of the human gut microbiota.
  • Benno1984 - The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants.
  • Benno1986 - Comparison of the fecal microflora in rural Japanese and urban Canadians.
  • Benno1989 - Comparison of fecal microflora of elderly persons in rural and urban areas of Japan.
  • Browne2016 - Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation.
  • Byrd2020 - Stability and dynamics of the human gut microbiome and its association with systemic immune traits.
  • Chen2020 - Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine
  • Chen2020a - Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease
  • Dubinkina2017 - Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease
  • Finegold1974 - Effect of diet on human fecal flora: comparison of Japanese and American diets
  • Finegold1977 - Fecal microbial flora in Seventh Day Adventist populations and control subjects.
  • Forster2019 - A human gut bacterial genome and culture collection for improved metagenomic analyses.
  • Holdeman1976 - Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress.
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Jeong2021 - The effect of taxonomic classification by full-length 16S rRNA sequencing with a synthetic long-read technology
  • Jie2017 - The gut microbiome in atherosclerotic cardiovascular disease
  • Karlsson2013 - Gut metagenome in European women with normal, impaired and diabetic glucose control
  • King2019 - Baseline human gut microbiota profile in healthy people and standard reporting template.
  • Lagier2016 - Culture of previously uncultured members of the human gut microbiota by culturomics.
  • Li2019b - Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus
  • MacFarlane2004 - Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis.
  • Minerbi2019 - Altered microbiome composition in individuals with fibromyalgia
  • Moore1974 - Human fecal flora: the normal flora of 20 Japanese-Hawaiians.
  • Moore1995 - Intestinal floras of populations that have a high risk of colon cancer
  • New2022 - Collective effects of human genomic variation on microbiome function.
  • Nielsen2014 - MetaHIT Consortium. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.
  • RajilicStojanovic2014 - The first 1000 cultured species of the human gastrointestinal microbiota.
  • Rothschild2018 - Environment dominates over host genetics in shaping human gut microbiota.
  • Tyakht2013 - Human gut microbiota community structures in urban and rural populations in Russia.
  • Wang2018 - A metagenome-wide association study of gut microbiota in asthma in UK adults
  • Wang2018a - Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model.
  • Wang2020a - Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents
  • Woodmansey2004 - Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects.
  • Zeller2014 - Potential of fecal microbiota for early-stage detection of colorectal cancer
  • Zou2019 - 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses.
  • deGoffau2013 - Fecal microbiota composition differs between children with β-cell autoimmunity and those without.
  • ...............................
  • GENERAL REFERENCES FOR BIFIDOBACTERIUM ADOLESCENTIS
  • CCUG - Culture Collection University of Gothenburg - Entire Collection
  • Sanz2007 - Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis