Collinsella aerofaciens

(aka Eubacterium aerofaciens)

Bacteria


General | Carbohydrate O/F | Substrate utilisation | Enzymes | Metabolites | Antibiotics

Overview


  • Collinsella aerofaciens, (aka Eubacterium aerofaciens), is a Gram-positive, non-spore-forming, strictly anaerobic, non-motile, coccus bacterium. It has been detected in at least 39 gut microbiome compilation studies or metastudies. The DNA G+C content is 60-61%. Collinsella aerofaciens is often a widespread coloniser of gut. (Browne2016; Kageyama1999)



  • This organism has been recovered from human faeces. The risk classification (www.baua.de) for this organism is 2, i.e., risk of individual infection, but low risk of spread. It is an opportunistic pathogen. Is a known gut commensal. Robust growth can have positive consequences for gut health.

  • GENERAL CHARACTERISTICS (Kageyama1999);
    Character Response
  • H+
  • Acid from carbohydrates usually produced:
  • fructose; galactose; glucose; mannose; cellubiose; lactose; maltose; sucrose;
  • ±
  • Strain-dependent acid from carbs:
  • rhamnose; ribose; amygdalin; raffinose; trehalose;
  • Substrates assimilated or utilised:
  • glucose; maltose; mannose;
  • Active enzymes:
  • acid phosphatase; arginine dihydrolase;
  • ±
  • Strain-dependent active enzymes:
  • α-glucosidase;

  • SPECIAL FEATURES (Kageyama1999);
    Character Response
  • Metabolites not produced:
  • indole;
  • VP test:
  • not active
  • Nitrate:
  • not reduced

  • RESPONSE TO ANTIBIOTICS (Goldstein2003); (Goldstein2013); (Goldstein2013b); (Tyrrell2012); (Citron2012a); (Goldstein2006); (Citron2003); (Citron2001); (Goldstein2000a);
    Class Active Resistant
  • Penicillins:
  • amoxicillin; amoxicillin-clavulanic acid; ampicillin; ampicillin-sulbactam; azlocillin; bacampicillin; benzylpenicillin; cloxacillin; dicloxacillin; imipenem; meropenem; oxacillin; penicillin; penicillin G; piperacillin; piperacillin-tazobactam; ticarcillin;
  • aztreonam;
  • Cephalosporins:
  • cefaclor; cefazolin; cefdinir; cefepime; cefixime; cefmetazole; cefoperazone; cefotaxime; cefotetan; cefotiam; cefoxitin; cefuroxime; cephalothin; moxalactam;
  • cefadroxil; ceftazidime;
  • Macrolides:
  • azithromycin; erythromycin; josamycin; spiramycin;
  • Tetracyclines:
  • chlortetracycline; doxycycline; meclocycline; methacycline; minocycline; oxytetracycline; tetracycline; tigecycline;
  • Quinolines:
  • ciprofloxacin; clinafloxacin; enoxacin; gatifloxacin; levofloxacin; moxifloxacin; norfloxacin; ofloxacin; pefloxacin; sarafloxacin; sparfloxacin;
  • clavulanic-acid; nalidixic-acid; pipemidic-acid;
  • Aminoglycosides:
  • amikacin; tobramycin;
  • dihydrostreptomycin; gentamicin; kanamycin; neomycin; sisomicin; spectinomycin; streptomycin;
  • Polypep/ketides:
  • rifabutin; rifampicin; rifapentine;
  • Heterocycles:
  • chloramphenicol; fusidic-acid; metronidazole; nitrofurantoin;
  • isoniazid; sulfadiazine; sulfadimethoxine; sulfamethoxazole; sulfanilamide; trimethoprim;
  • Vancomycins:
  • vancomycin; teicoplanin;
  • Miscellaneous antibiotics:
  • clindamycin; lincomycin; linezolid;
  • colistin;

  • NOTES

    This is a common inhabitant of the human gut and is one of the first species to colonise the gut in infants.

    Fuel sources used:
    It can use fibre, simple sugars (including lactose), protein and mucus as energy sources.

    Metabolites produced:
    Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, lactate, cobalamin, folate.

    Metabolites consumed:
    In addition, our genomic analysis indicates that most members of this species do not consume any reported metabolites.

    Emerging research:
    Small-scale studies have observed reduced levels of this species in patients with irritable bowel syndrome and Crohn's disease. However, high levels of this species have been associated with increased total cholesterol levels.

  • References: [1] [2] [3] [4] [5]

  • The bacterium Collinsella aerofaciens is well known for its ability to ferment a range of plant and animal origin carbohydrates and for producing H2, ethanol, short-chain fatty acids, and lactate in the human colon. C. aerofaciens is the major utilizer of lactose in the human colon. Several studies demonstrated that Collinsella and Bifidobacterium can modify the host bile acids to modulate the virulence and pathogenicity of enteric pathogens. Recently, it was reported that an altered abundance of Collinsella may also influence host plasma cholesterol levels. [PMID: 29167267]

  • GutFeeling KnowledgeBase COMMENTS [Website]

    Collinsella aerofaciens, a rod-shaped nonmotile obligate anaerobe, is the most abundant actinobacterium in the gastrointestinal tract of healthy humans. An altered abundance of C. aerofaciens may be linked with several health disorders, including irritable bowel syndrome. [PMID: 29167267]

  • Moore, WEC & LV Holdeman (1974). Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl. Microbiol. 27: 961-979.


  • Details


    GENERAL
    Lineage Physiology General Growth Tolerances Hydrol./digest./degr.
    Phylum:  Actinobacteria Class:  Coriobacteriia Order:  Coriobacteriales Family:  Coriobacteriaceae Genus:  Collinsella Alt. name:  Eubacterium aerofaciens Gram stain:  + O2 Relation.:  strictly anaerobic Spore:  No spore Motility:  Sessile Morphology:  Coccus
    Health:   Positive
    Source:  human faeces
    DNA G+C(%):  60-61
    Aesculin:  neg Urea:  neg Hippurate:  neg

    CARBOHYDRATE ACID FORMATION
    Monosaccharide O/F Oligosaccharide O/F Polysaccharide O/F Polyol O/F Other O/F
    Arabinose:  neg L-Arabinose:  neg Fructose:  + Galactose:  + Glucose:  + Mannose:  + Rhamnose:  d(neg) Ribose:  d(neg) D-Tagatose:  neg Xylose:  neg L-Xylose:  neg Cellubiose:  d(+) Lactose:  + Maltose:  + Melezitose:  neg Sucrose:  + Trehalose:  d(neg) Amygdalin:  d(neg) Dextrin:  neg Aesculin:  w(neg) Glycogen:  neg Starch:  neg D-Arabitol:  neg Erythritol:  neg Inositol:  neg Mannitol:  neg Sorbitol:  neg Salicin:  w(neg)

    SUBSTRATE ASSIMILATION & UTILISATION
    Monosaccharide util/assim Oligosaccharide util/assim Other carboh. util/assim Amino acid util/assim Organic acid util/assim
    Arabinose:  neg Glucose:  + Mannose:  + Rhamnose:  neg Maltose:  + Raffinose:  neg Trehalose:  neg Amygdalin:  neg Aesculin:  neg Inositol:  neg Inulin:  neg Sorbitol:  neg

    ENZYME ACTIVITY
    Enzymes: General Enzymes: Carbohydrate Enzymes: Protein Enzymes: Arylamidases Enzymes: Esters/fats
    Ac-β-glcamnd:  neg α-Fucosidase:  neg α-Galactosidase:  neg β-Galactosidase:  neg α-Glucosidase:  d β-Glucosidase:  neg β-Glucuronidase:  neg α-Mannosidase:  neg β-Mannosidase:  neg ArgDH:  + GluDC:  neg AlanineAA:  neg AlaPheProAA:  neg GluGluAA:  neg GlyAA:  vr LeuAA:  neg LeuGlyAA:  vr PyrrolidAA:  neg AlkalineP:  neg AcidP:  + Esterase(C4):  vr EstLip(C8):  vr Lipase(C14):  neg

    METABOLITES - PRODUCTION & USE
    Fuel Usable Metabolites Metabolites Released Special Products Compounds Produced

    Indole:  neg

    ANTIBIOTICS ℞
    Penicillins & Penems (μg/mL) Cephalosporins (μg/mL) Aminoglycosides (μg/mL) Macrolides (μg/mL) Quinolones (μg/mL)
    amoxicillin:  Sens
    Augmentin:  S(MIC50): 0.03, MIC90: 0.25, RNG: (≤0.015-0.25)
    ampicillin:  S(MIC50): 0.125, MIC90: 0.25, RNG: (0.03-1)
    amp-sulb:  S(MIC50): 0.25, MIC90: 0.5, RNG: (0.06–0.5)
    azlocillin:  Sens
    aztreonam:  Res
    bacampicillin:  Sens
    benzyl-pen:  Sens
    cloxacillin:  Sens
    dicloxacillin:  Sens
    oxacillin:  Sens
    penicillin:  S(MIC50): 0.5, MIC90: 2, RNG: (0.06–2)
    penicillin_G:  S(MIC50): ≤0.03, MIC90: 0.125, RNG: (≤0.03-0.5)
    piperacillin:  Sens
    piper-taz:  S(MIC50): 0.06, MIC90: 0.5, RNG: (0.03-16)
    ticarcillin:  Sens
    tica-clav:  Var(MIC50): 1, MIC90: 32, RNG: (0.06–32)
    imipenem:  S(MIC50): 0.03, MIC90: 0.06, RNG: (0.03-0.25)
    meropenem:  S(MIC50): 0.06, MIC90: 0.25, RNG: (0.03–0.25)
    cefaclor:  Sens
    cefadroxil:  Res
    cefalexin:  Var(MIC50): 2, MIC90: 8, RNG: (0.25-8)
    cefazolin:  Sens
    cefdinir:  Sens
    cefepime:  Sens
    cefixime:  Sens
    cefmetazole:  Sens
    cefoperazone:  Sens
    cefotaxime:  Sens
    cefotetan:  Sens
    cefotiam:  Sens
    cefoxitin:  S(MIC50): 4, MIC90: 16, RNG: (0.06–16)
    ceftazidime:  R(MIC50): 8, MIC90: 32, RNG: (0.25–32)
    cefuroxime:  Sens
    cephalothin:  Sens
    moxalactam:  Sens
    amikacin:  Sens
    dihydrostrept:  Res
    gentamicin:  Res
    kanamycin:  Res
    neomycin:  Res
    sisomicin:  Res
    spectinomycin:  Res
    streptomycin:  Res
    tobramycin:  Sens
    azithromycin:  S(MIC50): 0.06, MIC90: 0.125, RNG: (≤0.03-0.25)
    erythromycin:  S(MIC50): 0.06, MIC90: 0.125, RNG: (≤0.03-0.25)
    fidaxomicin:  Var(MIC50): 2, MIC90: >32, RNG: (0.125–>32)
    clarithromycin:  Var(MIC50): 0.5, MIC90: >32, RNG: (0.06–>32)
    quin-dalf:  Var(MIC50): 1, MIC90: 8, RNG: (0.06-8)
    roxithromycin:  Var(MIC50): 8, MIC90: >32, RNG: (0.06–>32)
    spiramycin:  Sens
    telithromycin:  Var(MIC50): 0.06, MIC90: >32, RNG: (0.06–>32)
    josamycin:  Sens
    linezolid:  S(MIC50): 1, MIC90: 8, RNG: (0.06–8)
    ciprofloxacin:  S(MIC50): ≤0.5, MIC90: 2, RNG: (≤0.5-2)
    clavulanate:  Res
    clinafloxacin:  Sens
    enoxacin:  Sens
    gatifloxacin:  Sens
    levofloxacin:  S(MIC50): 0.5, MIC90: 2, RNG: (≤0.06-2)
    moxifloxacin:  S(MIC50): 0.5, MIC90: 1, RNG: (0.06–8)
    nalidixic-acid:  Res
    norfloxacin:  Sens
    ofloxacin:  Sens
    pefloxacin:  Sens
    pipemidic_acid:  Res
    sarafloxacin:  Sens
    sparfloxacin:  Sens
    Tetracyclines (μg/mL) Vancomycin Class (μg/mL) Polypep/ketides (μg/mL) Heterocycles (μg/mL) Other (μg/mL)
    doxycycline:  Sens
    chlortetracycline:  Sens
    meclocycline:  Sens
    methacycline:  Sens
    minocycline:  Sens
    oxytetracycline:  Sens
    tetracycline:  S(MIC50): 0.25, MIC90: 2, RNG: (0.06-8)
    tigecycline:  S(MIC50): 0.125, MIC90: 0.5, RNG: (0.125–0.5)
    teicoplanin:  S(MIC50): 0.125, MIC90: 0.125, RNG: (0.06–0.25)
    vancomycin:  S(MIC50): 0.5, MIC90: 2, RNG: (0.25-2)
    bacitracin:  Var(MIC50): 4, MIC90: >128, RNG: (0.25–>128)
    rifabutin:  Sens
    rifampicin:  Sens
    rifapentine:  Sens
    chloramphenicol:  S(MIC50): 2, MIC90: 8, RNG: (0.25–8)
    isoniazid:  Res
    metronidazole:  S(MIC50): 0.125, MIC90: 1, RNG: (≤0.03-2)
    nitrofurantoin:  Sens
    sulfadiazine:  Res
    sulfadimethoxine:  Res
    sulfamethoxazole:  Res
    sulfanilamide:  Res
    trimethoprim:  Res
    clindamycin:  S(MIC50): 0.25, MIC90: 0.25, RNG: (≤0.03-0.25)
    lincomycin:  Sens
    daptomycin:  Var(MIC50): 0.25, MIC90: 4, RNG: (0.03-16)
    colistin:  Res
    fusidic-acid:  Sens

    References


    SPECIFIC REFERENCES FOR COLLINSELLA AEROFACIENS
  • Goldstein2003 - In Vitro Activities of Daptomycin, Vancomycin, Quinupristin- Dalfopristin, Linezolid, and Five Other Antimicrobials against 307 Gram-Positive Anaerobic and 31 Corynebacterium Clinical Isolates.
  • Browne2016 - Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation.
  • Kageyama1999 - Phylogenetic and phenotypic evidence for the transfer of Eubacterium aerofaciens to the genus Collinsella as Collinsella aerofaciens gen. nov., comb. nov.
  • Salyers1977 - Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon
  • Chen2016a - An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis
  • Ridlon2006 - Bile salt biotransformations by human intestinal bacteria
  • Gao2020 - Functional Microbiomics Reveals Alterations of the Gut Microbiome and Host Co-Metabolism in Patients With Alcoholic Hepatitis
  • Breban2017 - Faecal microbiota study reveals specific dysbiosis in spondyloarthritis
  • Coretti2018 - Gut Microbiota Features in Young Children With Autism Spectrum Disorders
  • Debyser2016 - Faecal proteomics: A tool to investigate dysbiosis and inflammation in patients with cystic fibrosis
  • GallardoBecerra2020 - Metatranscriptomic analysis to define the Secrebiome, and 16S rRNA profiling of the gut microbiome in obesity and metabolic syndrome of Mexican children
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Huang2019 - Analysis of microbiota in elderly patients with Acute Cerebral Infarction
  • Huang2019a - Metagenome-wide association study of the alterations in the intestinal microbiome composition of ankylosing spondylitis patients and the effect of traditional and herbal treatment
  • Jackson2016 - Signatures of early frailty in the gut microbiota
  • Kassinen2007 - The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects
  • Kim2020a - Altered Gut Microbiome Profile in Patients With Pulmonary Arterial Hypertension
  • Li2019c - Gut Microbiota Differs Between Parkinson's Disease Patients and Healthy Controls in Northeast China
  • Liu2019a - The intestinal microbiota associated with cardiac valve calcification differs from that of coronary artery disease
  • Malham2019 - The microbiome reflects diagnosis and predicts disease severity in paediatric onset inflammatory bowel disease
  • Miragoli2017 - Impact of cystic fibrosis disease on archaea and bacteria composition of gut microbiota
  • Moore1995 - Intestinal floras of populations that have a high risk of colon cancer
  • Shapiro2019 - Psoriatic patients have a distinct structural and functional fecal microbiota compared with controls
  • Shen2018 - Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study
  • Yachida2019 - Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer
  • Ye2018 - A metagenomic study of the gut microbiome in Behcet's disease
  • Laue2020 - Prospective associations of the infant gut microbiome and microbial function with social behaviors related to autism at age 3 years
  • Goldstein2013 - In vitro activity of Biapenem plus RPX7009, a carbapenem combined with a serine β-lactamase inhibitor, against anaerobic bacteria.
  • Goldstein2013b - Comparative in vitro activities of GSK2251052, a novel boron-containing leucyl-tRNA synthetase inhibitor, against 916 anaerobic organisms.
  • Tyrrell2012 - In vitro activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic, against 377 strains of anaerobic bacteria and 34 strains of Corynebacterium species.
  • Citron2012a - Comparative in vitro activities of LFF571 against Clostridium difficile and 630 other intestinal strains of aerobic and anaerobic bacteria.
  • Goldstein2006 - In vitro activity of moxifloxacin against 923 anaerobes isolated from human intra-abdominal infections.
  • Citron2003 - In vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, bacitracin, and four other antimicrobials against intestinal anaerobic bacteria.
  • Citron2001 - Comparative in vitro activities of ABT-773 against 362 clinical isolates of anaerobic bacteria.
  • Goldstein2000a - Comparative In vitro activities of ertapenem (MK-0826) against 1,001 anaerobes isolated from human intra-abdominal infections.
  • ...............................
  • GUT MICROBIOME COMPILATIONS AND METASTUDIES FOR COLLINSELLA AEROFACIENS
  • Benno1984 - The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants.
  • Benno1986 - Comparison of the fecal microflora in rural Japanese and urban Canadians.
  • Benno1989 - Comparison of fecal microflora of elderly persons in rural and urban areas of Japan.
  • Browne2016 - Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation.
  • Byrd2020 - Stability and dynamics of the human gut microbiome and its association with systemic immune traits.
  • Chen2020 - Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine
  • Chen2020a - Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease
  • Chung2019 - Impact of carbohydrate substrate complexity on the diversity of the human colonic microbiota.
  • De2020 - Metagenomic analysis of gut microbiome and resistome of diarrheal fecal samples from Kolkata, India, reveals the core and variable microbiota including signatures of microbial dark matter.
  • Dubinkina2017 - Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease
  • Finegold1974 - Effect of diet on human fecal flora: comparison of Japanese and American diets
  • Finegold1977 - Fecal microbial flora in Seventh Day Adventist populations and control subjects.
  • Forster2019 - A human gut bacterial genome and culture collection for improved metagenomic analyses.
  • Holdeman1976 - Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress.
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Jie2017 - The gut microbiome in atherosclerotic cardiovascular disease
  • Karlsson2013 - Gut metagenome in European women with normal, impaired and diabetic glucose control
  • King2019 - Baseline human gut microbiota profile in healthy people and standard reporting template.
  • Lagier2016 - Culture of previously uncultured members of the human gut microbiota by culturomics.
  • Li2019b - Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus
  • MacFarlane2004 - Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis.
  • McLaughlin2010 - The bacteriology of pouchitis: a molecular phylogenetic analysis using 16S rRNA gene cloning and sequencing.
  • Minerbi2019 - Altered microbiome composition in individuals with fibromyalgia
  • Moore1974 - Human fecal flora: the normal flora of 20 Japanese-Hawaiians.
  • Moore1995 - Intestinal floras of populations that have a high risk of colon cancer
  • New2022 - Collective effects of human genomic variation on microbiome function.
  • Nielsen2014 - MetaHIT Consortium. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.
  • PerezBrocal2015 - Metagenomic Analysis of Crohn's Disease Patients Identifies Changes in the Virome and Microbiome Related to Disease Status and Therapy, and Detects Potential Interactions and Biomarkers
  • Pfleiderer2013 - Culturomics identified 11 new bacterial species from a single anorexia nervosa stool sample.
  • RajilicStojanovic2014 - The first 1000 cultured species of the human gastrointestinal microbiota.
  • Rothschild2018 - Environment dominates over host genetics in shaping human gut microbiota.
  • Tyakht2013 - Human gut microbiota community structures in urban and rural populations in Russia.
  • Walker2011 - High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease.
  • Wang2020a - Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents
  • Woodmansey2004 - Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects.
  • Yang2020 - Species-Level Analysis of Human Gut Microbiota With Metataxonomics.
  • Yang2020a - Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families
  • Zeller2014 - Potential of fecal microbiota for early-stage detection of colorectal cancer
  • Zou2019 - 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses.
  • Zupancic2012 - Analysis of the Gut Microbiota in the Old Order Amish and Its Relation to the Metabolic Syndrome.
  • ...............................
  • GENERAL REFERENCES FOR COLLINSELLA AEROFACIENS
  • CCUG - Culture Collection University of Gothenburg - Entire Collection