Eggerthella lenta

(aka Eubacterium lentum)

Bacteria


General | Carbohydrate O/F | Substrate utilisation | Enzymes | Metabolites | Antibiotics

Overview


  • Eggerthella lenta, (aka Eubacterium lentum), is a Gram-positive, non-spore-forming, strictly anaerobic, non-motile, rod-shaped bacterium. It has been detected in at least 35 gut microbiome compilation studies or metastudies. The DNA G+C content is 62%. Eggerthella lenta is often a widespread coloniser of gut. (Kageyama1999a; Sperry1976; Wade2005Bergey)



  • This organism has been recovered from human faeces and clinical sources (blood - CCUG). The risk classification (www.baua.de) for this organism is 2, i.e., risk of individual infection, but low risk of spread (notes: human and animal pathogen). Is a known human pathogen. Is a known gut commensal.

  • GENERAL CHARACTERISTICS (Kageyama1999a); (Wade2005Bergey);
    Character Response
  • Substrates hydrolysed or digested:
  • mucin;
  • Substrates assimilated or utilised:
  • glucose; mucin;

  • SPECIAL FEATURES (Kageyama1999a);
    Character Response
  • Metabolites produced:
  • acetate; lactate; succinate;
  • Metabolites not produced:
  • formate; butyrate; CO₂; H₂;
  • Nitrate:
  • reduced

  • RESPONSE TO ANTIBIOTICS (Gardiner2015); (Goldstein2018a); (Goldstein2013a); (Goldstein2013b); (Tyrrell2012); (Citron2012a); (Goldstein2006); (Goldstein2005); (Citron2003); (Goldstein2003a); (Citron2001); (Goldstein2000a); (Citron1997);
    Class Active Resistant
  • Penicillins:
  • amoxicillin; amoxicillin-clavulanic acid; ampicillin; ampicillin-sulbactam; azlocillin; bacampicillin; benzylpenicillin; dicloxacillin; ertapenem; imipenem; meropenem; penicillin; penicillin G; piperacillin; ticarcillin;
  • aztreonam; cloxacillin; oxacillin; ticarcillin-clavulanic acid;
  • Cephalosporins:
  • cefaclor; cefdinir; cefmetazole; cefoxitin; cefuroxime; cephalothin;
  • cefadroxil; cefamandole; cefazolin; cefepime; cefixime; cefoperazone; cefotaxime; cefotetan; cefotiam; ceftazidime; ceftizoxime; moxalactam;
  • Macrolides:
  • azithromycin; erythromycin; fidaxomicin; josamycin; pristinamycin; quinupristin-dalfopristin; spiramycin;
  • Tetracyclines:
  • chlortetracycline; doxycycline; meclocycline; methacycline; minocycline; oxytetracycline; tetracycline; tigecycline;
  • Quinolines:
  • ciprofloxacin; clinafloxacin; enoxacin; garenoxacin; gatifloxacin; levofloxacin; norfloxacin; ofloxacin; pefloxacin; sarafloxacin; sparfloxacin; trovafloxacin;
  • clavulanic-acid; nalidixic-acid; pipemidic-acid;
  • Aminoglycosides:
  • tobramycin;
  • amikacin; dihydrostreptomycin; gentamicin; kanamycin; neomycin; sisomicin; spectinomycin; streptomycin;
  • Polypep/ketides:
  • rifabutin; rifampicin; rifapentine;
  • bacitracin;
  • Heterocycles:
  • chloramphenicol; fusidic-acid; metronidazole; nitrofurantoin; trimethoprim;
  • isoniazid; sulfadiazine; sulfadimethoxine; sulfamethoxazole; sulfanilamide;
  • Vancomycins:
  • vancomycin; teicoplanin;
  • Miscellaneous antibiotics:
  • clindamycin; lincomycin; linezolid; colistin; pristinamycin;

  • NOTES

    This is a inhabitant of the gut microbiota, but has also been associated with gastrointestinal infections.

    Fuel sources used:
    It can use the simple sugar glucose, protein and some steroids for energy.

    Metabolites produced:
    Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, BCAAs, GABA, histamine, lactate, succinate.

    Metabolites consumed:
    In addition, our genomic analysis indicates that most members of this species can consume the following metabolites: oxalate.

    Disease associations:
    Elevated levels of E. lenta have been associated with frailty, atherosclerosis, chronic fatigue syndrome and type II diabetes.

    Emerging research:
    This species can inactivate the cardiac drug digoxin by breaking it down. Interestingly, this species prefers the amino acid arginine for growth. When arginine is present, this inhibits E. lenta from breaking down digoxin.

  • References: [1] [2] [3] [4] [5] [6] [7]

  • E. lenta is part of the normal human intestinal microbiome and has been most commonly associated with infections from a gastrointestinal tract (GIT) source, which are often polymicrobial. In 2001, Stinear et al. were developing a rapid PCR-based screening method for detection of fecal carriers of vancomycin-resistant enterococci (VRE) when they identified the vanB locus in Eggerthella lenta, hypothesizing that anaerobic bowel flora may represent the origin of VRE and demonstrating that E. lenta is capable of acquiring vancomycin resistance. [PMID: 25520446]

    Strain C592 is a gram-positive, obligate anaerobe originally isolated from a centenarian stool sample at the University of Ryukyus in Okinawa, Japan. Strains of Eggerthella lenta are capable of oxidation-reduction reactions capable of oxidizing and epimerizing bile acid hydroxyl groups. Several genes encoding these enzymes, known as hydroxysteroid dehydrogenases (HSDH) have yet to be identified. It is also uncertain whether the products of E. lenta bile acid metabolism are further metabolized by other members of the gut microbiota. [PMID: 29617190] Eggerthella lenta is an anaerobic, Gram-positive bacillus commonly found in the human digestive tract. Occasionally, it can cause life-threatening infections. Bacteremia due to this organism is always clinically significant and is associated with gastrointestinal diseases and states of immune suppression. [PMID: 25371694]

  • GutFeeling KnowledgeBase COMMENTS [Website]

    Eggerthella lenta (strain ATCC 25559 / DSM 2243 / JCM 9979 / NCTC 11813 / VPI 0255) is an anaerobic, non-motile, non-sporulating pathogenic Gram-positive bacterium isolated from a rectal tumor in 1935. E. lenta is commonly found in blood and human intestinal microflora and can cause severe bacteremia. Its optimal growth temperature is 37 degrees Celsius. Growth is stimulated by arginine which is an important energy source via arginine dihydrolase pathway. It is bile-resistant. (Adapted from PMID 21304654). [UP000001377]

  • Eggerth, A. H. (1935). The gram-positive non-spore-bearing anaerobic bacilli of human feces. Journal of Bacteriology, 30(3), 277–299.


  • Details


    GENERAL
    Lineage Physiology General Growth Tolerances Hydrol./digest./degr.
    Phylum:  Actinobacteria Class:  Coriobacteriia Order:  Eggerthellales Family:  Eggerthellaceae Genus:  Eggerthella Alt. name:  Eubacterium lentum Gram stain:  + O2 Relation.:  strictly anaerobic Spore:  No spore Motility:  Sessile Morphology:  Rod
    Health:  Unknown
    Source:  human faeces and clinical sources (blood - CCUG)
    DNA G+C(%):  62
    Aesculin:  neg Gelatin:  neg

    CARBOHYDRATE ACID FORMATION
    Monosaccharide O/F Oligosaccharide O/F Polysaccharide O/F Polyol O/F Other O/F
    Arabinose:  neg Fructose:  neg Glucose:  neg Mannose:  neg Rhamnose:  neg Ribose:  neg Xylose:  neg Cellubiose:  neg Lactose:  neg Maltose:  neg Melezitose:  neg Melibiose:  neg Sucrose:  neg Trehalose:  neg Amygdalin:  neg Aesculin:  neg Inulin:  neg Starch:  neg Glycerol:  neg Inositol:  neg Mannitol:  neg Sorbitol:  neg Salicin:  neg

    SUBSTRATE ASSIMILATION & UTILISATION
    Monosaccharide util/assim Oligosaccharide util/assim Other carboh. util/assim Amino acid util/assim Organic acid util/assim
    Arabinose:  neg Glucose:  + Mannose:  neg Rhamnose:  neg Maltose:  neg Raffinose:  neg Trehalose:  neg Amygdalin:  neg Aesculin:  neg Inositol:  neg Inulin:  neg Sorbitol:  neg

    ENZYME ACTIVITY
    Enzymes: General Enzymes: Carbohydrate Enzymes: Protein Enzymes: Arylamidases Enzymes: Esters/fats
    Catalase:  neg

    ANTIBIOTICS ℞
    Penicillins & Penems (μg/mL) Cephalosporins (μg/mL) Aminoglycosides (μg/mL) Macrolides (μg/mL) Quinolones (μg/mL)
    amoxicillin:  Sens
    Augmentin:  S(MIC50): 0.03, MIC90: 0.25, RNG: (≤0.015-0.25)
    ampicillin:  S(MIC50): 0.25, MIC90: 0.5, RNG: (0.03-0.5)
    amp-sulb:  S(MIC50): 2, MIC90: 2, RNG: (2–4)
    azlocillin:  Sens
    aztreonam:  Res
    bacampicillin:  Sens
    benzyl-pen:  Sens
    cloxacillin:  Res
    dicloxacillin:  Sens
    oxacillin:  Res
    penicillin:  S(MIC50): 0.5, MIC90: 2, RNG: (0.06–2)
    penicillin_G:  S(MIC50): ≤0.03, MIC90: 0.125, RNG: (≤0.03-0.5)
    piperacillin:  Sens
    piper-taz:  Var(MIC50): 16, MIC90: 16, RNG: (≤0.03-32)
    ticarcillin:  Sens
    tica-clav:  R(MIC50): 16, MIC90: 32, RNG: (0.06–64)
    ertapenem:  S(MIC50): 0.12, MIC90: 0.5, RNG: (≤0.008-4)
    imipenem:  S(MIC50): 0.25, MIC90: 0.5, RNG: (≤0.03-0.5)
    meropenem:  S(MIC50): 0.062, MIC90: 0.25, RNG: (0.06-0.5)
    cefaclor:  Sens
    cefadroxil:  Res
    cefalexin:  Var(MIC50): 2, MIC90: 8, RNG: (0.25-8)
    cefamandole:  R(MIC50): 64, MIC90: 64, RNG: (1-64)
    cefazolin:  R(64)
    cefdinir:  Sens
    cefepime:  Res
    cefixime:  Res
    cefmetazole:  Sens
    cefoperazone:  R(MIC50): 16, MIC90: 64, RNG: (0.25-128)
    cefotaxime:  R(128)
    cefotetan:  R(MIC50): >128, MIC90: >128, RNG: (0.5->128)
    cefotiam:  R(MIC50): 64, MIC90: 64, RNG: (2-64)
    cefoxitin:  S(MIC50): 4, MIC90: 16, RNG: (0.5–32)
    ceftazidime:  R(MIC50): >128, MIC90: >128, RNG: (>128–>128)
    ceftizoxime:  R(MIC50): 32, MIC90: 32, RNG: (0.06-32)
    cefuroxime:  S(MIC50): 2, MIC90: -, RNG: (0.015–>32)
    cephalothin:  Sens
    moxalactam:  R(MIC50): >128, MIC90: >128, RNG: (1->128)
    amikacin:  Res
    dihydrostrept:  Res
    gentamicin:  Res
    kanamycin:  Res
    neomycin:  Res
    sisomicin:  Res
    spectinomycin:  Res
    streptomycin:  Res
    tobramycin:  Sens
    azithromycin:  S(MIC50): 0.06, MIC90: 0.125, RNG: (≤0.03-0.25)
    erythromycin:  S(MIC50): 0.06, MIC90: 0.125, RNG: (≤0.03-0.25)
    fidaxomicin:  S(MIC50): 0.03, MIC90: 0.03, RNG: (0.03–32)
    clarithromycin:  Var(MIC50): 0.5, MIC90: >32, RNG: (0.06–>32)
    pristinamycin:  S(MIC50): 0.06, MIC90: -, RNG: (0.06–0.12)
    quin-dalf:  S(MIC50): 0.5, MIC90: 1, RNG: (0.25-2)
    roxithromycin:  Var(MIC50): 8, MIC90: >32, RNG: (0.06–>32)
    spiramycin:  Sens
    telithromycin:  Var(MIC50): 0.06, MIC90: >32, RNG: (0.06–>32)
    josamycin:  Sens
    linezolid:  S(MIC50): 1, MIC90: 2, RNG: (1-4)
    ciprofloxacin:  S(MIC50): ≤0.5, MIC90: 2, RNG: (≤0.5-2)
    clavulanate:  Res
    clinafloxacin:  S(0.06/0.25)
    enoxacin:  Sens
    garenoxacin:  S(0.25)
    gatifloxacin:  S(MIC50): 0.5, MIC90: -, RNG: (0.03->8)
    levofloxacin:  S(MIC50): 0.5, MIC90: 2, RNG: (≤0.06-2)
    moxifloxacin:  Var(MIC50): 0.5, MIC90: 32, RNG: (0.25–>32)
    nalidixic-acid:  Res
    norfloxacin:  Sens
    ofloxacin:  S(MIC50): 1, MIC90: 2, RNG: (0.25-4)
    pefloxacin:  Sens
    pipemidic_acid:  Res
    sarafloxacin:  Sens
    sparfloxacin:  Sens
    trovafloxacin:  S(MIC50): 0.125, MIC90: 1, RNG: (0.015–1)
    Tetracyclines (μg/mL) Vancomycin Class (μg/mL) Polypep/ketides (μg/mL) Heterocycles (μg/mL) Other (μg/mL)
    doxycycline:  Sens
    chlortetracycline:  Sens
    meclocycline:  Sens
    methacycline:  Sens
    minocycline:  Sens
    oxytetracycline:  Sens
    tetracycline:  S(MIC50): 0.25, MIC90: 2, RNG: (0.06-8)
    tigecycline:  S(MIC50): 0.125, MIC90: 0.25, RNG: (0.125–0.25)
    teicoplanin:  S(MIC50): 0.25, MIC90: 0.5, RNG: (0.06-0.5)
    vancomycin:  S(MIC50): 1, MIC90: 2, RNG: (1-2)
    bacitracin:  R(MIC50): 16, MIC90: >128, RNG: (0.25–>128)
    rifabutin:  Sens
    rifampicin:  Sens
    rifapentine:  Sens
    chloramphenicol:  S(MIC50): 4, MIC90: 8, RNG: (2–8)
    isoniazid:  Res
    metronidazole:  S(MIC50): 0.125, MIC90: 1, RNG: (≤0.03-2)
    nitrofurantoin:  Sens
    sulfadiazine:  Res
    sulfadimethoxine:  Res
    sulfamethoxazole:  Res
    sulfanilamide:  Res
    trimethoprim:  Sens
    clindamycin:  S(MIC50): 0.25, MIC90: 0.25, RNG: (≤0.03-0.25)
    lincomycin:  Sens
    daptomycin:  Var(MIC50): 2, MIC90: 16, RNG: (0.125-16)
    colistin:  Sens
    fusidic-acid:  Sens

    References


    SPECIFIC REFERENCES FOR EGGERTHELLA LENTA
  • Gardiner2015 - Clinical and Microbiological Characteristics of Eggerthella lenta Bacteremia.
  • Kageyama1999a - Phylogenetic evidence for the transfer of Eubacterium lentum to the genus Eggerthella as Eggerthella lenta gen. nov., comb. nov.
  • Schwiertz2000 - Quantification of Different Eubacterium spp. in Human Fecal Samples with Species-Specific 16S rRNA-Targeted Oligonucleotide Probes.
  • Sperry1976 - Arginine, a growth-limiting factor for Eubacterium lentum.
  • Wade2005Bergey - Bergey's manual of systematic bacteriology. Vol. 5, The Actinobacteria. Part A & B. Coriobacteriaceae, Genus VI. Eggerthella
  • Chen2016a - An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis
  • Ridlon2006 - Bile salt biotransformations by human intestinal bacteria
  • Cassir2015 - Clostridium butyricum Strains and Dysbiosis Linked to Necrotizing Enterocolitis in Preterm Neonates
  • Chen2020 - Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine
  • Coretti2018 - Gut Microbiota Features in Young Children With Autism Spectrum Disorders
  • Jackson2016 - Signatures of early frailty in the gut microbiota
  • Jie2017 - The gut microbiome in atherosclerotic cardiovascular disease
  • Margiotta2020 - Gut microbiota composition and frailty in elderly patients with Chronic Kidney Disease
  • Miyake2015 - Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters
  • Qin2012 - Metagenome-wide association study of gut microbiota in type 2 diabetes
  • Shimizu2019 - Relative abundance of Megamonas hypermegale and Butyrivibrio species decreased in the intestine and its possible association with the T cell aberration by metabolite alteration in patients with Behcet's disease
  • Ventura2019 - Gut microbiome of treatment-naïve MS patients of different ethnicities early in disease course
  • Wang2018 - A metagenome-wide association study of gut microbiota in asthma in UK adults
  • Wang2019a - Alterations in Gut Glutamate Metabolism Associated with Changes in Gut Microbiota Composition in Children with Autism Spectrum Disorder
  • Wang2020a - Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents
  • Goldstein2018a - Comparative In Vitro Activities of Relebactam, Imipenem, the Combination of the Two, and Six Comparator Antimicrobial Agents against 432 Strains of Anaerobic Organisms, Including Imipenem-Resistant Strains.
  • Goldstein2013a - Comparative in vitro activities of SMT19969, a new antimicrobial agent, against Clostridium difficile and 350 gram-positive and gram-negative aerobic and anaerobic intestinal flora isolates.
  • Goldstein2013b - Comparative in vitro activities of GSK2251052, a novel boron-containing leucyl-tRNA synthetase inhibitor, against 916 anaerobic organisms.
  • Tyrrell2012 - In vitro activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic, against 377 strains of anaerobic bacteria and 34 strains of Corynebacterium species.
  • Citron2012a - Comparative in vitro activities of LFF571 against Clostridium difficile and 630 other intestinal strains of aerobic and anaerobic bacteria.
  • Goldstein2006 - In vitro activity of moxifloxacin against 923 anaerobes isolated from human intra-abdominal infections.
  • Goldstein2005 - Comparative in vitro activities of XRP 2868, pristinamycin, quinupristin-dalfopristin, vancomycin, daptomycin, linezolid, clarithromycin, telithromycin, clindamycin, and ampicillin against anaerobic gram-positive species, actinomycetes, and lactobacilli.
  • Citron2003 - In vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, bacitracin, and four other antimicrobials against intestinal anaerobic bacteria.
  • Goldstein2003a - In vitro activities of ABT-492, a new fluoroquinolone, against 155 aerobic and 171 anaerobic pathogens isolated from antral sinus puncture specimens from patients with sinusitis.
  • Citron2001 - Comparative in vitro activities of ABT-773 against 362 clinical isolates of anaerobic bacteria.
  • Goldstein2000a - Comparative In vitro activities of ertapenem (MK-0826) against 1,001 anaerobes isolated from human intra-abdominal infections.
  • Citron1997 - Comparative in vitro activities of trovafloxacin (CP-99,219) against 221 aerobic and 217 anaerobic bacteria isolated from patients with intra-abdominal infections.
  • ...............................
  • GUT MICROBIOME COMPILATIONS AND METASTUDIES FOR EGGERTHELLA LENTA
  • Benno1984 - The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants.
  • Benno1986 - Comparison of the fecal microflora in rural Japanese and urban Canadians.
  • Benno1989 - Comparison of fecal microflora of elderly persons in rural and urban areas of Japan.
  • Byrd2020 - Stability and dynamics of the human gut microbiome and its association with systemic immune traits.
  • Cassir2015 - Clostridium butyricum Strains and Dysbiosis Linked to Necrotizing Enterocolitis in Preterm Neonates
  • Chen2020 - Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine
  • Chen2020a - Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease
  • Dubinkina2017 - Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease
  • Finegold1974 - Effect of diet on human fecal flora: comparison of Japanese and American diets
  • Finegold1977 - Fecal microbial flora in Seventh Day Adventist populations and control subjects.
  • Forster2019 - A human gut bacterial genome and culture collection for improved metagenomic analyses.
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Jie2017 - The gut microbiome in atherosclerotic cardiovascular disease
  • King2019 - Baseline human gut microbiota profile in healthy people and standard reporting template.
  • Lagier2016 - Culture of previously uncultured members of the human gut microbiota by culturomics.
  • LeChatelier2013 - Richness of human gut microbiome correlates with metabolic markers
  • Li2019b - Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus
  • McLaughlin2010 - The bacteriology of pouchitis: a molecular phylogenetic analysis using 16S rRNA gene cloning and sequencing.
  • Minerbi2019 - Altered microbiome composition in individuals with fibromyalgia
  • New2022 - Collective effects of human genomic variation on microbiome function.
  • Nielsen2014 - MetaHIT Consortium. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.
  • PerezBrocal2015 - Metagenomic Analysis of Crohn's Disease Patients Identifies Changes in the Virome and Microbiome Related to Disease Status and Therapy, and Detects Potential Interactions and Biomarkers
  • Pfleiderer2013 - Culturomics identified 11 new bacterial species from a single anorexia nervosa stool sample.
  • Qin2012 - Metagenome-wide association study of gut microbiota in type 2 diabetes
  • RajilicStojanovic2014 - The first 1000 cultured species of the human gastrointestinal microbiota.
  • Rothschild2018 - Environment dominates over host genetics in shaping human gut microbiota.
  • Salonen2014 - Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men.
  • Tyakht2013 - Human gut microbiota community structures in urban and rural populations in Russia.
  • Walker2011 - High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease.
  • Wang2018 - A metagenome-wide association study of gut microbiota in asthma in UK adults
  • Wang2018a - Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model.
  • Wang2020a - Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents
  • Woodmansey2004 - Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects.
  • Yang2020 - Species-Level Analysis of Human Gut Microbiota With Metataxonomics.
  • Yang2020a - Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families
  • Zeller2014 - Potential of fecal microbiota for early-stage detection of colorectal cancer
  • Zou2019 - 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses.
  • ...............................
  • GENERAL REFERENCES FOR EGGERTHELLA LENTA
  • Alkhalil2017 - Bacterial involvements in ulcerative colitis: molecular and microbiological studies