Enterococcus faecium

(aka Streptococcus faecium)

Bacteria


General | Carbohydrate O/F | Substrate utilisation | Enzymes | Metabolites | Antibiotics

Overview


  • Enterococcus faecium, (aka Streptococcus faecium), is a Gram-positive, non-spore-forming, microaerophilic, coccus bacterium. It has been detected in at least 30 gut microbiome compilation studies or metastudies. The DNA G+C content is 37-40%. Enterococcus faecium is often a widespread coloniser of gut. (Schleifer1984; Svec2011Bergey; Terekhov2018; Rossi2016; Mundt1968)



  • This organism has been recovered from human clinical sources (blood, sputum, wound, urine), veterinary clinical materials, food, the environment, and human faeces. The risk classification (www.baua.de) for this organism is 2, i.e., risk of individual infection, but low risk of spread. It is an opportunistic pathogen. Is a known gut commensal.

  • QUIRKS
  • Found in human breast milk (Jeurink2013).

  • GENERAL CHARACTERISTICS (Schleifer1984); (Svec2011Bergey); (Mundt1968);
    Character Response
  • Substrates hydrolysed or digested:
  • aesculin; hippurate;
  • ±
  • Strain-dependent hydrolysis or digestion:
  • starch;
  • 🧂
  • Salt tolerance:
  • tolerates 6.5% salt;
  • pH
  • Acidity tolerance:
  • tolerates pH 9.6;
  • 🌡
  • Temperature tolerance:
  • grows at 10℃; grows at 45℃;
  • H+
  • Acid from carbohydrates usually produced:
  • L-arabinose; fructose; galactose; glucose; mannose; ribose; D-tagatose; amygdalin; starch; cellubiose; gentiobiose; lactose; maltose; melibiose; sucrose; trehalose; arbutin; gluconate; α-methyl glucoside; β-methyl glucoside; N-Ac glucosamine; salicin;
  • Substrates assimilated or utilised:
  • melibiose;
  • ±
  • Strain-dependent substrate utilisation:
  • hippurate;
  • Active enzymes:
  • acid phosphatase; arginine dihydrolase; N-Ac β-glucosaminidase; esterase C4; esterase lipase C8; α-galactosidase; β-galactosidase; β-glucosidase; Leu arylamidase; β-mannosidase; pyrrolidine arylamidase;

  • SPECIAL FEATURES (Schleifer1984); (Svec2011Bergey); (Mundt1968);
    Character Response
  • Metabolites not produced:
  • indole;
  • VP test:
  • active
  • Haemolysis:
  • alpha
  • Nitrate:
  • not reduced
  • Pigments:
  • not produced

  • RESPONSE TO ANTIBIOTICS (Donabedian2006); (Goldstein2013a); (Citron2012a); (Citron1997);
    Class Active Resistant
  • Penicillins:
  • amoxicillin-clavulanic acid; ampicillin; ampicillin-sulbactam; ertapenem; imipenem; meropenem; penicillin; piperacillin; piperacillin-tazobactam;
  • Cephalosporins:
  • cefaclor; cefalexin; cefdinir; cefepime; cefixime; cefoperazone; cefotaxime; cefotetan; cefoxitin; cefpirom; cefpodoxime; ceftazidime;
  • Macrolides:
  • clarithromycin; fidaxomicin; quinupristin-dalfopristin; spiramycin;
  • erythromycin;
  • Tetracyclines:
  • tigecycline;
  • tetracycline;
  • Quinolines:
  • trovafloxacin;
  • ciprofloxacin; gatifloxacin; levofloxacin; nalidixic-acid; ofloxacin;
  • Aminoglycosides:
  • gentamicin; streptomycin;
  • Polypep/ketides:
  • bacitracin; rifampicin;
  • Heterocycles:
  • co-trimoxazole;
  • chloramphenicol; metronidazole;
  • Vancomycins:
  • teicoplanin;
  • vancomycin; dalbavancin;
  • Miscellaneous antibiotics:
  • linezolid;
  • clindamycin;

  • N/A

  • Enterococcus faecium is a commensal bacterium of the human gastrointestinal tract and an important nosocomial pathogen, particularly through its ability to develop resistance to multiple antibiotics, including vancomycin. Strain Aus0004 belongs to MLST group ST17, a member of clonal complex 17 (CC17), which also represents the majority of E. faecium strains isolated from hospitals globally. Strains belonging to CC17 are proposed to possess particular traits for enhancing persistence in the health care environment, including acquiring ampicillin and quinolone resistance, and a pathogenicity island that commonly harbors the esp gene encoding the putative virulence factor enterococcal surface protein. [UP000007591]

    This strain is a marketed probiotic. Research conducted has trace complete pathways for amino acid synthesis viz. valine, lysine, and methionine. These are among the essential amino acids and need to be supplied exogenously. Vitamins such as folate and thiamine are the components of Vitamin-B and are considered as essential nutrients for humans. Folate (folic acid) cannot be synthesized by human cells and hence is necessary to be supplemented exogenously as it plays important role in DNA and RNA synthesis and amino acid metabolism. Thus, strains (T110 and 17OM39) producing such amino acids and vitamins are considered beneficial for human use. [https://doi.org/10.1101/295881] E. faecium is widely and extensively studied for its leading cause of nosocomial infections in humans. It is a gut commensal and acts as opportunistic pathogen due to a variety of virulence factors, including lipopolysaccharides and biofilm formation. Their pathogenic nature is evident in urinary tract infections, endocarditis, and surgical wound infection, displaying its capability of causing a wide range of infections. Another remarkable character of E. faecium is its tolerance to many antimicrobial drugs. It has also acquired antibiotic-resistance gene against vancomycin and a multidrug resistance beta-lactamase gene. On the contrary, few strains commensal in human gut provide beneficial effect to humans as probiotics, few are responsible for nosocomial infection and few as non-pathogens. [https://doi.org/10.1101/295881]

    Enterococcus faecium and Enterococcus faecalis are the two enterococci most frequently causing human infections, however vancomycin resistance has become increasingly common predominately in E. faecium. Vancomycin resistance is conferred by the presence of one of nine different gene clusters, although the majority of VRE strains possess either the vanA or vanB operon. The United States where vanA-type resistance predominates, vanB-type vancomycin resistant E. faecium are the most important cause of VRE infections in Australia. Outbreaks have been shown to occur in clinical enviornments. [PMID: 24004955] Enterococci are part of the human gastrointestinal tract microbiota but some species within the genus are also significant opportunistic nosocomial pathogens. Enterococcal infections can be difficult to treat because of their intrinsic and acquired resistance to many classes of antibiotics, including what are often considered last-line agents such as vancomycin and daptomycin. This strain is characterized as a 2009 vancomycin-resistant Enterococcus faecium (VREfm) bloodstream isolate. [PMID: 24004955] The GenBank sequence for assembly ID is from WGS Sequence Set. 

  • GutFeeling KnowledgeBase COMMENTS [Website]

    Enterococcus faecium is a commensal bacterium of the human gastrointestinal tract and an important nosocomial pathogen, particularly through its ability to develop resistance to multiple antibiotics, including vancomycin. Strain Aus0004 was isolated from the bloodstream of a patient in Melbourne, Australia, in 1998. This strain belongs to MLST group ST17, a member of clonal complex 17 (CC17), which also represents the majority of E. faecium strains isolated from hospitals globally. Strains belonging to CC17 are proposed to possess particular traits for enhancing persistence in the health care environment, including acquiring ampicillin and quinolone resistance, and a pathogenicity island that commonly harbors the esp gene encoding the putative virulence factor enterococcal surface protein. Strain Aus0004 has 3 prophage, and a considerable number of insertion elements, suggesting it has few barriers to the acquisition of exogenous DNA, (adapted from PMID 22366422). [UP000007591]

  • Finegold, S. M., Howard, R. A., & Vera, L. S. (1974). Effect of diet on human intestinal fecal flora: comparison of Japanese and American diets. Am. J. Clin. Nutr, 27, 1456–1469.


  • Details


    GENERAL
    Lineage Physiology General Growth Tolerances Hydrol./digest./degr.
    Phylum:  Firmicutes Class:  Bacilli Order:  Lactobacillales Family:  Enterococcaceae Genus:  Enterococcus Alt. name:  Streptococcus faecium Gram stain:  + O2 Relation.:  microaerophilic Spore:  No spore Morphology:  Coccus Pigment:  neg
    Health:  Unknown
    Source:  human clinical sources (blood, sputum, wound, urine), veterinary clinical materials, food, the environment, and human faeces
    DNA G+C(%):  37-40
    Low T(℃):  10(+)
    High T(℃):  45(+)
    NaCl >6%:  6.5(+)
    pH >8:  9.6(+)
    Aesculin:  + Urea:  neg Gelatin:  neg Starch:  d Hippurate:  +

    CARBOHYDRATE ACID FORMATION
    Monosaccharide O/F Oligosaccharide O/F Polysaccharide O/F Polyol O/F Other O/F
    Arabinose:  neg D-Arabinose:  neg L-Arabinose:  + Fructose:  + Fucose:  neg D-Fucose:  neg Galactose:  + Glucose:  + Mannose:  + D-Lyxose:  neg Rhamnose:  vr Ribose:  + Sorbose:  neg L-Sorbose:  neg D-Tagatose:  + Xylose:  vr L-Xylose:  neg Cellubiose:  + Gentiobiose:  + Lactose:  + Maltose:  + Melezitose:  neg Melibiose:  d(+) Sucrose:  + Trehalose:  + Turanose:  neg Amygdalin:  + Dextrin:  vr Glycogen:  vr Inulin:  neg Starch:  d(+) Adonitol:  neg D-Arabitol:  neg L-Arabitol:  neg Dulcitol:  neg Erythritol:  neg Glycerol:  vr Inositol:  neg Mannitol:  neg Sorbitol:  vr Xylitol:  neg Arbutin:  + Gluconate:  + 2-Ketogluconate:  neg 5-Ketogluconate:  neg Me-α-D-Glc:  + Me-α-D-Mann:  vr Me-Xyloside:  neg NAc-α-GA:  + Salicin:  +

    SUBSTRATE ASSIMILATION & UTILISATION
    Monosaccharide util/assim Oligosaccharide util/assim Other carboh. util/assim Amino acid util/assim Organic acid util/assim
    Melibiose:  + Hippurate:  d Ser:  neg Citrate:  neg Malate:  neg Pyruvate:  neg

    ENZYME ACTIVITY
    Enzymes: General Enzymes: Carbohydrate Enzymes: Protein Enzymes: Arylamidases Enzymes: Esters/fats
    Catalase:  neg Urease:  neg Ac-β-glcamnd:  + α-Fucosidase:  neg α-Galactosidase:  + β-Galactosidase:  + α-Glucosidase:  neg β-Glucosidase:  + β-Glucuronidase:  neg α-Mannosidase:  neg β-Mannosidase:  + ArgDH:  + OrnDC:  neg AlanineAA:  vr AlaPheProAA:  neg GluGluAA:  vr GlyAA:  vr LeuAA:  + LeuGlyAA:  vr PyrrolidAA:  + AlkalineP:  neg AcidP:  + Esterase(C4):  + EstLip(C8):  + Lipase(C14):  neg

    METABOLITES - PRODUCTION & USE
    Fuel Usable Metabolites Metabolites Released Special Products Compounds Produced

    Indole:  neg Pigment:  neg

    ANTIBIOTICS ℞
    Penicillins & Penems (μg/mL) Cephalosporins (μg/mL) Aminoglycosides (μg/mL) Macrolides (μg/mL) Quinolones (μg/mL)
    Augmentin:  R(MIC50): 32, MIC90: 128, RNG: (0.5->256)
    ampicillin:  R(MIC50): >64, MIC90: >128, RNG: (4->128)
    amp-sulb:  R(MIC50): >16, MIC90: >16, RNG: (16–>16)
    penicillin:  R(MIC50): ≥16, MIC90: ≥16, RNG: (0.12-≥16)
    piperacillin:  R(MIC50): >64, MIC90: >128, RNG: (8->128)
    piper-taz:  R(MIC50): >256, MIC90: >256, RNG: (0.5->256)
    ertapenem:  R(MIC50): >16, MIC90: >16, RNG: (0.12->16)
    imipenem:  R(MIC50): >128, MIC90: >128, RNG: (8->128)
    meropenem:  R(MIC50): >128, MIC90: >128, RNG: (16->128)
    cefaclor:  R(MIC50): 64, MIC90: >64, RNG: (64->64)
    cefalexin:  R(>32/>32)
    cefdinir:  R(MIC50): >128, MIC90: >128, RNG: (64->128)
    cefepime:  R(MIC50): >128, MIC90: >128, RNG: (4->128)
    cefixime:  R(MIC50): >64, MIC90: >64, RNG: (>64-?)
    cefoperazone:  R(MIC50): >64, MIC90: >128, RNG: (4->128)
    cefotaxime:  R(MIC50): >128, MIC90: >128, RNG: (2->128)
    cefotetan:  R(MIC50): >128, MIC90: >128, RNG: (4–>128)
    cefoxitin:  R(MIC50): >32, MIC90: >32, RNG: (>32)
    cefpirom:  R(MIC50): >128, MIC90: >128, RNG: (1->128)
    cefpodoxime:  R(MIC50): >128, MIC90: >128, RNG: (128->128)
    ceftazidime:  R(MIC50): >128, MIC90: >128, RNG: (16->128)
    gentamicin:  R(MIC50): >128, MIC90: >128, RNG: (16->128)
    streptomycin:  R(MIC50): >1000, MIC90: >2000, RNG: (≤1000->2000)
    erythromycin:  R(MIC50): >8, MIC90: >64, RNG: (≤0.12->64)
    fidaxomicin:  S(MIC50): 4, MIC90: 4, RNG: (2–8)
    clarithromycin:  S(1.56)
    quin-dalf:  S(MIC50): 0.5, MIC90: 4, RNG: (0.25-0.25)
    roxithromycin:  Var(MIC50): 8-16), MIC90: Var(8-16
    spiramycin:  S(MIC50): 1, MIC90: -, RNG: (0.25-8)
    telithromycin:  Var(MIC50): 2, MIC90: 4, RNG: (0.03-8)
    linezolid:  S(MIC50): 1, MIC90: 2, RNG: (0.5-8)
    ciprofloxacin:  R(MIC50): >16, MIC90: >16, RNG: (0.25->16)
    clinafloxacin:  Var(MIC50): 2, MIC90: 16
    garenoxacin:  Var(MIC50): 4, MIC90: 16, RNG: (0.25-64)
    gatifloxacin:  R(MIC50): 8, MIC90: 32, RNG: (1-65)
    gemifloxacin:  Var(MIC50): 2, MIC90: 8, RNG: (0.03-64)
    levofloxacin:  R(MIC50): 16, MIC90: 32, RNG: (1-67)
    moxifloxacin:  Var(MIC50): 4, MIC90: 16, RNG: (0.5-64)
    nalidixic-acid:  R(MIC50): >32, MIC90: >32, RNG: (>32-?)
    ofloxacin:  R(MIC50): 32, MIC90: 128, RNG: (2->128)
    trovafloxacin:  S(MIC50): 0.125, MIC90: 0.5, RNG: (0.015–1)
    Tetracyclines (μg/mL) Vancomycin Class (μg/mL) Polypep/ketides (μg/mL) Heterocycles (μg/mL) Other (μg/mL)
    doxycycline:  Var(MIC50): 0.12, MIC90: 16, RNG: (0.12-64)
    minocycline:  Var(MIC50): 0.06, MIC90: 16, RNG: (0.06-64)
    oxytetracycline:  RNG: (0.39->100)
    tetracycline:  R(MIC50): >8, MIC90: >8, RNG: (≤4->8)
    tigecycline:  S(MIC50): 0.12, MIC90: 0.25, RNG: (≤0.016-2)
    dalbavancin:  R(128-)
    teicoplanin:  S(MIC50): 0.12, MIC90: 0.5, RNG: (0.12-0.5)
    vancomycin:  R(MIC50): >128, MIC90: >128, RNG: (25->128)
    bacitracin:  R(≤1120-)
    rifampicin:  R(MIC50): >8, MIC90: >128, RNG: (≤0.008-128)
    chloramphenicol:  R(MIC50): 8, MIC90: 16, RNG: (≤0.12->16)
    metronidazole:  R(MIC50): >512, MIC90: >512, RNG: (256->512)
    SXT:  Var(MIC50): ≤0.5, MIC90: 4
    co-trimoxazole:  S(MIC50): >1, MIC90: >1, RNG: (≤0.5->1)
    clindamycin:  R(MIC50): >16, MIC90: >16, RNG: (0.25–>16)
    daptomycin:  Var(MIC50): 1, MIC90: 4, RNG: (0.03-8)

    References


    SPECIFIC REFERENCES FOR ENTEROCOCCUS FAECIUM
  • Donabedian2006 - Quinupristin-Dalfopristin Resistance in Enterococcus faecium Isolates from Humans, Farm Animals, and Grocery Store Meat in the United States.
  • Schleifer1984 - Transfer of Streptococcus faecalis and Streptococcus faecium to the Genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov.
  • Svec2011Bergey - Bergey's manual of systematic bacteriology. Vol. 3, The Firmicutes. Family Enterococcaceae, Genus I. Enterococcus
  • Terekhov2018 - Ultrahigh-throughput functional profiling of microbiota communities.
  • Rossi2016 - Mining metagenomic whole genome sequences revealed subdominant but constant Lactobacillus population in the human gut microbiota.
  • Gao2020 - Functional Microbiomics Reveals Alterations of the Gut Microbiome and Host Co-Metabolism in Patients With Alcoholic Hepatitis
  • Cassir2015 - Clostridium butyricum Strains and Dysbiosis Linked to Necrotizing Enterocolitis in Preterm Neonates
  • Finegold2002 - Gastrointestinal microflora studies in late-onset autism
  • Gryp2020 - Isolation and Quantification of Uremic Toxin Precursor-Generating Gut Bacteria in Chronic Kidney Disease Patients
  • Iwasawa2016 - Characterisation of the faecal microbiota in Japanese patients with paediatric-onset primary sclerosing cholangitis
  • Kang2010 - Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray
  • Li2012 - Molecular-phylogenetic characterization of the microbiota in ulcerated and non-ulcerated regions in the patients with Crohn's disease
  • Manor2016 - Metagenomic evidence for taxonomic dysbiosis and functional imbalance in the gastrointestinal tracts of children with cystic fibrosis
  • Tarallo2019 - Altered Fecal Small RNA Profiles in Colorectal Cancer Reflect Gut Microbiome Composition in Stool Samples
  • Zhu2020 - Metagenome-wide association of gut microbiome features for schizophrenia
  • Mondot2011 - Highlighting new phylogenetic specificities of Crohn's disease microbiota.
  • Goldstein2013a - Comparative in vitro activities of SMT19969, a new antimicrobial agent, against Clostridium difficile and 350 gram-positive and gram-negative aerobic and anaerobic intestinal flora isolates.
  • Citron2012a - Comparative in vitro activities of LFF571 against Clostridium difficile and 630 other intestinal strains of aerobic and anaerobic bacteria.
  • Citron1997 - Comparative in vitro activities of trovafloxacin (CP-99,219) against 221 aerobic and 217 anaerobic bacteria isolated from patients with intra-abdominal infections.
  • Mundt1968 - Streptococcus faecium var. casseliflavus , nov. var.
  • Watanabe1981 - Studies on streptococci. I. Distribution of fecal streptococci in man.
  • ...............................
  • GUT MICROBIOME COMPILATIONS AND METASTUDIES FOR ENTEROCOCCUS FAECIUM
  • Almeida2019 - A new genomic blueprint of the human gut microbiota.
  • Benno1984 - The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants.
  • Benno1986 - Comparison of the fecal microflora in rural Japanese and urban Canadians.
  • Benno1989 - Comparison of fecal microflora of elderly persons in rural and urban areas of Japan.
  • Byrd2020 - Stability and dynamics of the human gut microbiome and its association with systemic immune traits.
  • Cassir2015 - Clostridium butyricum Strains and Dysbiosis Linked to Necrotizing Enterocolitis in Preterm Neonates
  • De2020 - Metagenomic analysis of gut microbiome and resistome of diarrheal fecal samples from Kolkata, India, reveals the core and variable microbiota including signatures of microbial dark matter.
  • Dubinkina2017 - Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease
  • Dubourg2013 - The gut microbiota of a patient with resistant tuberculosis is more comprehensively studied by culturomics than by metagenomics.
  • Finegold1977 - Fecal microbial flora in Seventh Day Adventist populations and control subjects.
  • Forster2019 - A human gut bacterial genome and culture collection for improved metagenomic analyses.
  • Hoyles2012 - Recognition of greater diversity of Bacillus species and related bacteria in human faeces.
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Jie2017 - The gut microbiome in atherosclerotic cardiovascular disease
  • King2019 - Baseline human gut microbiota profile in healthy people and standard reporting template.
  • Lagier2016 - Culture of previously uncultured members of the human gut microbiota by culturomics.
  • McLaughlin2010 - The bacteriology of pouchitis: a molecular phylogenetic analysis using 16S rRNA gene cloning and sequencing.
  • Moore1995 - Intestinal floras of populations that have a high risk of colon cancer
  • New2022 - Collective effects of human genomic variation on microbiome function.
  • Nielsen2014 - MetaHIT Consortium. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.
  • Pfleiderer2013 - Culturomics identified 11 new bacterial species from a single anorexia nervosa stool sample.
  • RajilicStojanovic2014 - The first 1000 cultured species of the human gastrointestinal microbiota.
  • Rothschild2018 - Environment dominates over host genetics in shaping human gut microbiota.
  • Tyakht2013 - Human gut microbiota community structures in urban and rural populations in Russia.
  • Wang2020a - Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents
  • Woodmansey2004 - Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects.
  • Yang2020 - Species-Level Analysis of Human Gut Microbiota With Metataxonomics.
  • Yang2020a - Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families
  • Zeller2014 - Potential of fecal microbiota for early-stage detection of colorectal cancer
  • Zou2019 - 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses.
  • ...............................
  • GENERAL REFERENCES FOR ENTEROCOCCUS FAECIUM
  • Ludwig2009 - Revised road map to the phylum Firmicutes.
  • CCUG - Culture Collection University of Gothenburg - Entire Collection
  • Hoyles2012 - Recognition of greater diversity of Bacillus species and related bacteria in human faeces.