Lachnospira eligens

(aka Eubacterium eligens)

Bacteria


General | Carbohydrate O/F | Substrate utilisation | Enzymes | Metabolites | Antibiotics

Overview


  • Lachnospira eligens, (aka Eubacterium eligens), is a Gram-positive, spore-forming, strictly anaerobic, motile, rod-shaped bacterium. It has been detected in at least 36 gut microbiome compilation studies or metastudies. The DNA G+C content is 36%. Lachnospira eligens is often a widespread coloniser of gut. (Browne2016; Holdeman1974; Wade2011Bergeys)



  • This organism has been recovered from human faeces. The risk classification (www.baua.de) for this organism is 1, i.e., low risk of infection and spread. Pathogenicity status unknown, or very unlikely to be pathogenic. Is a known gut commensal. Robust growth can have positive consequences for gut health.

  • GENERAL CHARACTERISTICS (Holdeman1974); (Wade2011Bergeys);
    Character Response
  • ±
  • Strain-dependent hydrolysis or digestion:
  • milk;
  • 🌡
  • Temperature tolerance:
  • doesn't grow at 30℃; strain-variable at 45(d); Grows optimally at 37℃.
  • H+
  • Acid from carbohydrates usually produced:
  • fructose; glucose; pectin; starch; cellubiose; lactose; salicin;
  • ±
  • Strain-dependent acid from carbs:
  • fucose; mannose;
  • Active enzymes:
  • β-galactosidase; β-glucosidase;
  • ±
  • Strain-dependent active enzymes:
  • β-glucuronidase;

  • SPECIAL FEATURES (Holdeman1974); (Wade2011Bergeys);
    Character Response
  • Metabolites produced:
  • formate (major); acetate; lactate (minor); ethanol; succinate (trace);
  • Metabolites not produced:
  • butyrate; isobutyrate; H₂S; pyruvate; ammonia; H₂; indole;
  • Haemolysis:
  • absent
  • Nitrate:
  • not reduced

  • RESPONSE TO ANTIBIOTICS
    Class Active Resistant
  • Penicillins:
  • amoxicillin; ampicillin; azlocillin; bacampicillin; benzylpenicillin; cloxacillin; dicloxacillin; imipenem; meropenem; oxacillin; piperacillin; ticarcillin;
  • aztreonam;
  • Cephalosporins:
  • cefazolin; cefdinir; cefepime; cefixime; cefmetazole; cefoperazone; cefotaxime; cefotetan; cefotiam; cefoxitin; ceftazidime; cefuroxime; cephalothin; moxalactam;
  • cefaclor; cefadroxil;
  • Macrolides:
  • azithromycin; clarithromycin; erythromycin; josamycin; roxithromycin; spiramycin;
  • Tetracyclines:
  • chlortetracycline; doxycycline; meclocycline; methacycline; minocycline; oxytetracycline; tetracycline;
  • Quinolines:
  • ciprofloxacin; clinafloxacin; gatifloxacin; moxifloxacin; sarafloxacin; sparfloxacin;
  • clavulanic-acid; enoxacin; nalidixic-acid; norfloxacin; ofloxacin; pefloxacin; pipemidic-acid;
  • Aminoglycosides:
  • amikacin; dihydrostreptomycin; gentamicin; kanamycin; neomycin; sisomicin; spectinomycin; streptomycin; tobramycin;
  • Polypep/ketides:
  • bacitracin; rifabutin; rifampicin; rifapentine;
  • Heterocycles:
  • chloramphenicol; fusidic-acid; metronidazole; nitrofurantoin;
  • isoniazid; sulfadiazine; sulfadimethoxine; sulfamethoxazole; sulfanilamide; trimethoprim;
  • Vancomycins:
  • vancomycin;
  • Miscellaneous antibiotics:
  • clindamycin; lincomycin; linezolid; colistin;

  • NOTES

    This bacteria was formerly known as Eubacterium eligens. This is a common inhabitant of the human gut.

    Fuel sources used:
    It can use fibre, simple sugars (including lactose) and protein for energy.

    Metabolites produced:
    Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, B-glucuronidase, BCAAs, lactate, folate, biotin, riboflavin.

    Metabolites consumed:
    In addition, our genomic analysis indicates that most members of this species do not consume any reported metabolites.

    Emerging research:
    This species has been observed at decreased levels in individuals with colon cancer and individuals with asthma compared to healthy controls.

  • References: [1] [2] [3] [4]

  • In the human intestinal tract, Eubacterium is the second most common genus after the genus Bacteroides and is more common than the genus Bifidobacterium. The importance of members of the genus Eubacterium has been reported previously. [PMID: 10618251]

  • GutFeeling KnowledgeBase COMMENTS [Website]

    The human distal gut microbiota contain more bacterial cells than all of our body's other microbial communities combined. More than 90% of phylogenetic types belong to two divisions, the Bacteroidetes and the Firmicutes, with the remaining types distributed among eight other divisions. In the human colon, Clostridium cluster XIVa is 1 of 2 abundantly represented clusters of Firmicutes. Eubacterium spp., members of Clostridium closter XIVa, are a group of anaerobic Gram-positive nonspore-forming rods; strain ATCC 27750 is a human-gut derived bacterium. Little is yet known about the niche this bacterium occupies in the human gut. [UP000001476]

  • Holdeman, L. V., & Moore, W. E. C. (1974). New genus, Coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces. International Journal of Systematic Bacteriology, 24(2), 260–277.


  • Details


    GENERAL
    Lineage Physiology General Growth Tolerances Hydrol./digest./degr.
    Phylum:  Firmicutes Class:  Clostridia Order:  Eubacteriales Family:  Lachnospiraceae Genus:  Lachnospira Alt. name:  Eubacterium eligens Gram stain:  + O2 Relation.:  strictly anaerobic Spore:  Endospore Motility:  Swimming Morphology:  Rod
    Health:   Positive
    Source:  human faeces
    DNA G+C(%):  36
    Opt. T:  37℃
    Lower T(℃):  30(neg)
    High T(℃):  45(d)
    Aesculin:  vr Urea:  neg Gelatin:  neg Starch:  neg Hippurate:  neg Milk:  curdle Meat:  neg

    CARBOHYDRATE ACID FORMATION
    Monosaccharide O/F Oligosaccharide O/F Polysaccharide O/F Polyol O/F Other O/F
    L-Arabinose:  neg Fructose:  + Fucose:  d Galactose:  neg Glucose:  d(+) Mannose:  d(neg) Rhamnose:  neg Ribose:  neg Sorbose:  neg Cellubiose:  + Lactose:  d(+) Maltose:  neg Melezitose:  neg Melibiose:  neg Sucrose:  neg Trehalose:  neg Amygdalin:  neg Aesculin:  neg Glycogen:  neg Inulin:  neg Starch:  w(+) Pectin:  d(+) Xylan:  neg Adonitol:  neg Dulcitol:  neg Erythritol:  neg Glycerol:  neg Inositol:  neg Mannitol:  neg Sorbitol:  neg Salicin:  d(+)

    SUBSTRATE ASSIMILATION & UTILISATION
    Monosaccharide util/assim Oligosaccharide util/assim Other carboh. util/assim Amino acid util/assim Organic acid util/assim
    Arabinose:  neg Galactose:  neg Glucose:  vr Mannose:  neg Rhamnose:  neg Ribose:  neg Sorbose:  neg Xylose:  neg Maltose:  neg Melibiose:  neg Raffinose:  neg Sucrose:  neg Trehalose:  neg Adonitol:  neg Amygdalin:  neg Dulcitol:  neg Aesculin:  neg Glycerol:  neg Glycogen:  neg Inositol:  neg Inulin:  neg Mannitol:  neg Salicin:  neg Sorbitol:  neg Starch:  neg

    ENZYME ACTIVITY
    Enzymes: General Enzymes: Carbohydrate Enzymes: Protein Enzymes: Arylamidases Enzymes: Esters/fats
    Catalase:  neg Urease:  neg Ac-β-glcamnd:  neg α-Fucosidase:  neg α-Galactosidase:  neg β-Galactosidase:  + α-Glucosidase:  neg β-Glucosidase:  + β-Glucuronidase:  d ArgDH:  neg GluDC:  neg AlanineAA:  neg GluGluAA:  neg GlyAA:  neg LeuAA:  neg LeuGlyAA:  neg PyrrolidAA:  neg AlkalineP:  neg

    METABOLITES - PRODUCTION & USE
    Fuel Usable Metabolites Metabolites Released Special Products Compounds Produced

    Formate:  Major(+) Acetate:  + Butyrate:  neg Lactate:  minor(+) Isobutyrate:  neg Ethanol:  + Succinate:  trace(+) H2S:  neg Pyruvate:  neg Ammonia:  neg H2:  neg Indole:  neg

    ANTIBIOTICS ℞
    Penicillins & Penems (μg/mL) Cephalosporins (μg/mL) Aminoglycosides (μg/mL) Macrolides (μg/mL) Quinolones (μg/mL)
    amoxicillin:  Sens
    ampicillin:  Sens
    azlocillin:  Sens
    aztreonam:  Res
    bacampicillin:  Sens
    benzyl-pen:  Sens
    cloxacillin:  Sens
    dicloxacillin:  Sens
    oxacillin:  Sens
    piperacillin:  Sens
    ticarcillin:  Sens
    imipenem:  Sens
    meropenem:  Sens
    cefaclor:  Res
    cefadroxil:  Res
    cefazolin:  Sens
    cefdinir:  Sens
    cefepime:  Sens
    cefixime:  Sens
    cefmetazole:  Sens
    cefoperazone:  Sens
    cefotaxime:  Sens
    cefotetan:  Sens
    cefotiam:  Sens
    cefoxitin:  Sens
    ceftazidime:  Sens
    cefuroxime:  Sens
    cephalothin:  Sens
    moxalactam:  Sens
    amikacin:  Res
    dihydrostrept:  Res
    gentamicin:  Res
    kanamycin:  Res
    neomycin:  Res
    sisomicin:  Res
    spectinomycin:  Res
    streptomycin:  Res
    tobramycin:  Res
    azithromycin:  Sens
    erythromycin:  Sens
    clarithromycin:  Sens
    roxithromycin:  Sens
    spiramycin:  Sens
    josamycin:  Sens
    linezolid:  Sens
    ciprofloxacin:  Sens
    clavulanate:  Res
    clinafloxacin:  Sens
    enoxacin:  Res
    gatifloxacin:  Sens
    moxifloxacin:  Sens
    nalidixic-acid:  Res
    norfloxacin:  Res
    ofloxacin:  Res
    pefloxacin:  Res
    pipemidic_acid:  Res
    sarafloxacin:  Sens
    sparfloxacin:  Sens
    Tetracyclines (μg/mL) Vancomycin Class (μg/mL) Polypep/ketides (μg/mL) Heterocycles (μg/mL) Other (μg/mL)
    doxycycline:  Sens
    chlortetracycline:  Sens
    meclocycline:  Sens
    methacycline:  Sens
    minocycline:  Sens
    oxytetracycline:  Sens
    tetracycline:  Sens
    vancomycin:  Sens
    bacitracin:  Sens
    rifabutin:  Sens
    rifampicin:  Sens
    rifapentine:  Sens
    chloramphenicol:  Sens
    isoniazid:  Res
    metronidazole:  Sens
    nitrofurantoin:  Sens
    sulfadiazine:  Res
    sulfadimethoxine:  Res
    sulfamethoxazole:  Res
    sulfanilamide:  Res
    trimethoprim:  Res
    clindamycin:  Sens
    lincomycin:  Sens
    colistin:  Sens
    fusidic-acid:  Sens

    References


    SPECIFIC REFERENCES FOR LACHNOSPIRA ELIGENS
  • Browne2016 - Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation.
  • Holdeman1974 - New Genus, Coprococcus, Twelve New Species, and Emended Descriptions of Four Previously Described Species of Bacteria from Human Feces.
  • Salyers1977 - Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon
  • Bedarf2017 - Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson's disease patients
  • DeAngelis2013 - Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified
  • Debyser2016 - Faecal proteomics: A tool to investigate dysbiosis and inflammation in patients with cystic fibrosis
  • Finegold2010 - Pyrosequencing study of fecal microflora of autistic and control children
  • Giongo2011 - Toward defining the autoimmune microbiome for type 1 diabetes
  • Hoffman2014 - Escherichia coli dysbiosis correlates with gastrointestinal dysfunction in children with cystic fibrosis
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Ma2020 - Alterations in Gut Microbiota of Gestational Diabetes Patients During the First Trimester of Pregnancy
  • Moore1995 - Intestinal floras of populations that have a high risk of colon cancer
  • Qin2014 - Alterations of the human gut microbiome in liver cirrhosis
  • Sjodin2019 - Temporal and long-term gut microbiota variation in allergic disease: A prospective study from infancy to school age
  • Tarallo2019 - Altered Fecal Small RNA Profiles in Colorectal Cancer Reflect Gut Microbiome Composition in Stool Samples
  • VillanuevaMillan2019 - Characterization of gut microbiota composition in HIV-infected patients with metabolic syndrome
  • Yachida2019 - Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer
  • Yu2015 - Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer
  • Zeller2014 - Potential of fecal microbiota for early-stage detection of colorectal cancer
  • Zeng2019 - Structural and functional profiles of the gut microbial community in polycystic ovary syndrome with insulin resistance (IR-PCOS): a pilot study
  • Wade2011Bergeys - Bergey's manual of systematic bacteriology. Vol. 3, The Firmicutes. Family Eubacteriaceae, Genus I. Eubacterium
  • Coretti2018 - Gut Microbiota Features in Young Children With Autism Spectrum Disorders
  • ...............................
  • GUT MICROBIOME COMPILATIONS AND METASTUDIES FOR LACHNOSPIRA ELIGENS
  • Browne2016 - Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation.
  • Byrd2020 - Stability and dynamics of the human gut microbiome and its association with systemic immune traits.
  • Chen2020 - Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine
  • Chen2020a - Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease
  • Chung2016 - Modulation of the human gut microbiota by dietary fibres occurs at the species level.
  • De2020 - Metagenomic analysis of gut microbiome and resistome of diarrheal fecal samples from Kolkata, India, reveals the core and variable microbiota including signatures of microbial dark matter.
  • Dubinkina2017 - Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease
  • Finegold1977 - Fecal microbial flora in Seventh Day Adventist populations and control subjects.
  • Holdeman1976 - Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress.
  • Hoyles2012 - Recognition of greater diversity of Bacillus species and related bacteria in human faeces.
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Jeong2021 - The effect of taxonomic classification by full-length 16S rRNA sequencing with a synthetic long-read technology
  • Jie2017 - The gut microbiome in atherosclerotic cardiovascular disease
  • Karlsson2013 - Gut metagenome in European women with normal, impaired and diabetic glucose control
  • King2019 - Baseline human gut microbiota profile in healthy people and standard reporting template.
  • Lagier2016 - Culture of previously uncultured members of the human gut microbiota by culturomics.
  • LeChatelier2013 - Richness of human gut microbiome correlates with metabolic markers
  • Mangin2004 - Molecular inventory of faecal microflora in patients with Crohn's disease.
  • McLaughlin2010 - The bacteriology of pouchitis: a molecular phylogenetic analysis using 16S rRNA gene cloning and sequencing.
  • Minerbi2019 - Altered microbiome composition in individuals with fibromyalgia
  • Moore1974 - Human fecal flora: the normal flora of 20 Japanese-Hawaiians.
  • Moore1995 - Intestinal floras of populations that have a high risk of colon cancer
  • Nam2008a - Bacterial, archaeal, and eukaryal diversity in the intestines of Korean people.
  • New2022 - Collective effects of human genomic variation on microbiome function.
  • Nielsen2014 - MetaHIT Consortium. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.
  • Qin2012 - Metagenome-wide association study of gut microbiota in type 2 diabetes
  • RajilicStojanovic2014 - The first 1000 cultured species of the human gastrointestinal microbiota.
  • Rothschild2018 - Environment dominates over host genetics in shaping human gut microbiota.
  • Tyakht2013 - Human gut microbiota community structures in urban and rural populations in Russia.
  • Walker2011 - High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease.
  • Wang2018 - A metagenome-wide association study of gut microbiota in asthma in UK adults
  • Wang2018a - Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model.
  • Wang2020a - Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents
  • Woodmansey2004 - Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects.
  • Yang2020 - Species-Level Analysis of Human Gut Microbiota With Metataxonomics.
  • Yang2020a - Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families
  • Zeller2014 - Potential of fecal microbiota for early-stage detection of colorectal cancer
  • Zou2019 - 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses.
  • ...............................
  • GENERAL REFERENCES FOR LACHNOSPIRA ELIGENS
  • Ludwig2009 - Revised road map to the phylum Firmicutes.