General | Carbohydrate O/F | Substrate utilisation | Enzymes | Metabolites | Antibiotics

Overview


  • Lactobacillus acidophilus is a Gram-positive, non-spore-forming, facultatively anaerobic, non-motile, rod-shaped bacterium. It has been detected in at least 23 gut microbiome compilation studies or metastudies. The DNA G+C content is 34–37%. Lactobacillus acidophilus is often a widespread coloniser of gut. (Hansen1970; Hammes2011Bergey; Rossi2016; Walter2008)



  • This organism has been recovered from human faeces and clinical sources (blood, urine - CCUG). The risk classification (www.baua.de) for this organism is 1, i.e., low risk of infection and spread (notes: opportunistic in immunocompromised patients). Is a rare opportunistic pathogen. Is a known gut commensal. Robust growth can have positive consequences for gut health.

  • GENERAL CHARACTERISTICS (Hansen1970); (Hammes2011Bergey);
    Character Response
  • Substrates hydrolysed or digested:
  • aesculin;
  • ±
  • Strain-dependent hydrolysis or digestion:
  • milk;
  • 🌡
  • Temperature tolerance:
  • grows weakly at 20℃; strain-variable at 45(d);
  • H+
  • Acid from carbohydrates usually produced:
  • fructose; galactose; glucose; mannose; amygdalin; cellubiose; lactose; maltose; melibiose; sucrose; N-Ac glucosamine; salicin;
  • ±
  • Strain-dependent acid from carbs:
  • raffinose; trehalose;
  • ±
  • Strain-dependent substrate utilisation:
  • melibiose;
  • Active enzymes:
  • Ala arylamidase; Ala-Phe-Pro arylamidase; acid phosphatase; esterase C4; β-galactosidase; α-glucosidase; β-glucosidase; Gly arylamidase; Leu arylamidase;

  • SPECIAL FEATURES (Hansen1970); (Hammes2011Bergey);
    Character Response
  • Metabolites produced:
  • lactate;
  • Metabolites not produced:
  • H₂S; indole;
  • VP test:
  • not active
  • Nitrate:
  • not reduced

  • RESPONSE TO ANTIBIOTICS (Goldstein2003); (Goldstein2013a); (Tyrrell2012); (Goldstein2006); (Goldstein2006c); (Goldstein2005); (Citron2003); (Citron2001); (Goldstein2000a);
    Class Active Resistant
  • Penicillins:
  • ampicillin; ampicillin-sulbactam; imipenem; penicillin; penicillin G; piperacillin-tazobactam;
  • oxacillin;
  • Cephalosporins:
  • cefotaxime;
  • cefoxitin;
  • Macrolides:
  • erythromycin; pristinamycin; quinupristin-dalfopristin;
  • Tetracyclines:
  • doxycycline; tigecycline;
  • Quinolines:
  • levofloxacin; moxifloxacin;
  • ofloxacin;
  • Aminoglycosides:
  • kanamycin; streptomycin;
  • Heterocycles:
  • chloramphenicol;
  • metronidazole;
  • Miscellaneous antibiotics:
  • clindamycin; linezolid; novobiocin; pristinamycin;

  • NOTES

    This is a common probiotic and is often found as live cultures in fermented dairy products and in fermented soy products (e.g. miso, tempeh).

    Fuel sources used:
    This species can use fibre, resistant starch, simple sugars (including lactose) and protein.

    Metabolites produced:
    Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, lactate, folate.

    Metabolites consumed:
    In addition, our genomic analysis indicates that most members of this species can consume the following metabolites: oxalate.

    Emerging research:
    Clinical trials have shown some strains of this species may be effective at reducing symptoms of atopic dermatitis, decreasing diarrhea in children, and improving symptoms of mild hepatic encephalopathy. This species does not colonise the gut although it has been observed to persist in the gut in some individuals for up to ten days following ingestion.

  • References: [1] [2] [3] [4] [5] [6]

  • In vivo and in vitro studies of L. acidophilus strain La-14 have documented probiotic functionalities, including tolerance to gastrointestinal conditions, oxalate-degradation capability, bacteriocin production, and beneficial modulation of the immune response. [PMID: 23788546]

  • GutFeeling KnowledgeBase COMMENTS [Website]

    Lactobacillus acidophilus is a Gram-positive, non-spore forming, homo- fermentative, catalase-negative rod. It is a common inhabitant of the human intestinal tract, the human mouth and vagina. It is also found in some traditional fermented milks (e.g. kefir) and is today widely used in probiotic foods and supplements. Numerous studies have demonstrated the diverse beneficial effects of different strains of L. acidophilus validating its use as a probiotic. [http://ss1.spletnik.si/4_4/000/000/19f/152/La-14%20TM.pdf]

  • Moro, E (1900). Ueber den Bacillus acidophilus. Jahrb. f. Kinderh. 52: 38-55.


  • Details


    GENERAL
    Lineage Physiology General Growth Tolerances Hydrol./digest./degr.
    Phylum:  Firmicutes Class:  Bacilli Order:  Lactobacillales Family:  Lactobacillaceae Genus:  Lactobacillus Gram stain:  + O2 Relation.:  facultatively anaerobic Spore:  No spore Motility:  Sessile Morphology:  Rod
    Health:   Positive
    Source:  human faeces and clinical sources (blood, urine - CCUG)
    DNA G+C(%):  34–37
    Lower T(℃):  20(w)
    High T(℃):  45(d)
    Aesculin:  + Urea:  neg Gelatin:  neg Casein:  neg Arginine:  neg Hippurate:  neg Milk:  curdle(w)

    CARBOHYDRATE ACID FORMATION
    Monosaccharide O/F Oligosaccharide O/F Polysaccharide O/F Polyol O/F Other O/F
    Arabinose:  neg D-Arabinose:  neg L-Arabinose:  neg Fructose:  + Fucose:  neg D-Fucose:  neg Galactose:  + Glucose:  + Mannose:  + D-Lyxose:  neg Rhamnose:  neg Ribose:  neg Sorbose:  neg D-Tagatose:  neg Xylose:  neg L-Xylose:  neg Cellubiose:  + Gentiobiose:  vr Lactose:  + Maltose:  + Melezitose:  neg Melibiose:  d(+) Sucrose:  + Trehalose:  d Turanose:  neg Amygdalin:  + Dextrin:  neg Glycogen:  neg Inulin:  neg Starch:  neg Adonitol:  neg D-Arabitol:  neg L-Arabitol:  neg Dulcitol:  neg Erythritol:  neg Glycerol:  neg Inositol:  neg Mannitol:  neg Sorbitol:  neg Xylitol:  neg Arbutin:  vr Gluconate:  neg 2-Ketogluconate:  neg 5-Ketogluconate:  neg Me-α-D-Glc:  neg Me-α-D-Mann:  neg Me-Xyloside:  neg NAc-α-GA:  + Salicin:  +

    SUBSTRATE ASSIMILATION & UTILISATION
    Monosaccharide util/assim Oligosaccharide util/assim Other carboh. util/assim Amino acid util/assim Organic acid util/assim
    Melibiose:  d

    ENZYME ACTIVITY
    Enzymes: General Enzymes: Carbohydrate Enzymes: Protein Enzymes: Arylamidases Enzymes: Esters/fats
    Catalase:  neg Urease:  neg Ac-β-glcamnd:  neg α-Fucosidase:  neg β-Galactosidase:  + α-Glucosidase:  + β-Glucosidase:  + β-Glucuronidase:  neg α-Mannosidase:  neg β-Mannosidase:  neg ArgDH:  neg GluDC:  neg AlanineAA:  + AlaPheProAA:  + GluGluAA:  neg GlyAA:  + LeuAA:  + LeuGlyAA:  neg PyrrolidAA:  neg AlkalineP:  neg AcidP:  + Esterase(C4):  + EstLip(C8):  neg Lipase(C14):  neg

    METABOLITES - PRODUCTION & USE
    Fuel Usable Metabolites Metabolites Released Special Products Compounds Produced

    Lactate:  + H2S:  neg Indole:  neg

    ANTIBIOTICS ℞
    Penicillins & Penems (μg/mL) Cephalosporins (μg/mL) Aminoglycosides (μg/mL) Macrolides (μg/mL) Quinolones (μg/mL)
    ampicillin:  S(MIC50): 0.128, MIC90: 0.5, RNG: (0.03-1)
    amp-sulb:  S(MIC50): 0.06, MIC90: 0.06, RNG: (0.06–0.125)
    oxacillin:  R(4-64)
    penicillin:  S(MIC50): 0.125, MIC90: 0.5, RNG: (0.06–1)
    penicillin_G:  S(MIC50): 0.5, MIC90: 2, RNG: (≤0.03-4)
    piper-taz:  S(MIC50): 0.25, MIC90: 1, RNG: (≤0.03-1)
    tica-clav:  Var(MIC50): 4, MIC90: 64, RNG: (0.06–64)
    imipenem:  S(MIC50): 0.125, MIC90: 2, RNG: (≤0.015-8)
    meropenem:  Var(MIC50): 0.25, MIC90: >16, RNG: (0.03–>16)
    cefotaxime:  SensRNG: (0.25-1)
    cefoxitin:  R(MIC50): 64, MIC90: >128, RNG: (0.06–>128)
    gentamicin:  RNG: (2-4)
    kanamycin:  R(32-128)
    neomycin:  RNG: (8-16)
    streptomycin:  R(16-64)
    tobramycin:  Var(MIC50): 4-32), MIC90: Var(4-32
    azithromycin:  Var(MIC50): 2, MIC90: >32, RNG: (0.06–>32)
    erythromycin:  SensRNG: (0.125-0.25)
    fidaxomicin:  Var(MIC50): 8, MIC90: >512, RNG: (0.25->512)
    clarithromycin:  Var(MIC50): 0.5, MIC90: >32, RNG: (0.06–>32)
    pristinamycin:  S(MIC50): 0.12, MIC90: 0.25, RNG: (0.03–2)
    quin-dalf:  S(MIC50): 0.25, MIC90: 1, RNG: (0.125-4)
    roxithromycin:  Var(MIC50): 2, MIC90: >32, RNG: (0.06–>32)
    telithromycin:  Var(MIC50): 0.06, MIC90: >32, RNG: (0.06–>32)
    linezolid:  S(MIC50): 4, MIC90: 8, RNG: (0.5–16)
    levofloxacin:  S(MIC50): 2, MIC90: 4, RNG: (0.125–8)
    moxifloxacin:  S(MIC50): 1, MIC90: 2, RNG: (0.125–8)
    ofloxacin:  R(8-64)
    Tetracyclines (μg/mL) Vancomycin Class (μg/mL) Polypep/ketides (μg/mL) Heterocycles (μg/mL) Other (μg/mL)
    doxycycline:  S(MIC50): 4, MIC90: 8, RNG: (0.125–16)
    tetracycline:  RNG: (4-32)
    tigecycline:  S(MIC50): 0.25, MIC90: 0.5, RNG: (0.06–1)
    dalbavancin:  Var(MIC50): >0.5, MIC90: >32, RNG: (0.06->32)
    teicoplanin:  Var(MIC50): 1, MIC90: >64, RNG: (0.06–>64)
    vancomycin:  Var(MIC50): 4, MIC90: >32, RNG: (0.25–>32)
    bacitracin:  Var(MIC50): 8, MIC90: 128, RNG: (0.5–>128)
    chloramphenicol:  S(MIC50): 4, MIC90: 16, RNG: (1–>32)
    metronidazole:  R(MIC50): >32, MIC90: >32, RNG: (0.5->32)
    nitrofurantoin:  RNG: (4-≥256)
    trimethoprim:  RNG: (2-64)
    clindamycin:  S(MIC50): 0.125, MIC90: 2, RNG: (0.02->32)
    lincomycin:  RNG: (0.125-4)
    daptomycin:  Var(MIC50): 1, MIC90: 16, RNG: (≤0.03-32)
    novobiocin:  SensRNG: (0.125-1)

    References


    SPECIFIC REFERENCES FOR LACTOBACILLUS ACIDOPHILUS
  • Goldstein2003 - In Vitro Activities of Daptomycin, Vancomycin, Quinupristin- Dalfopristin, Linezolid, and Five Other Antimicrobials against 307 Gram-Positive Anaerobic and 31 Corynebacterium Clinical Isolates.
  • Zheng2020 - A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae.
  • Hansen1970 - Lactobacillus acidophilus (Moro) comb. nov.
  • Hammes2011Bergey - Bergey's manual of systematic bacteriology. Vol. 3, The Firmicutes. Family Lactobacillaceae, Genus I. Lactobacillus
  • Rossi2016 - Mining metagenomic whole genome sequences revealed subdominant but constant Lactobacillus population in the human gut microbiota.
  • Walter2008 - Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research.
  • Salyers1977 - Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon
  • Ridlon2006 - Bile salt biotransformations by human intestinal bacteria
  • Balamurugan2010 - Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children
  • Gryp2020 - Isolation and Quantification of Uremic Toxin Precursor-Generating Gut Bacteria in Chronic Kidney Disease Patients
  • Le2013 - Alterations in fecal Lactobacillus and Bifidobacterium species in type 2 diabetic patients in Southern China population
  • Goldstein2013a - Comparative in vitro activities of SMT19969, a new antimicrobial agent, against Clostridium difficile and 350 gram-positive and gram-negative aerobic and anaerobic intestinal flora isolates.
  • Tyrrell2012 - In vitro activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic, against 377 strains of anaerobic bacteria and 34 strains of Corynebacterium species.
  • Goldstein2006 - In vitro activity of moxifloxacin against 923 anaerobes isolated from human intra-abdominal infections.
  • Goldstein2006c - Comparative in vitro susceptibilities of 396 unusual anaerobic strains to tigecycline and eight other antimicrobial agents.
  • Goldstein2005 - Comparative in vitro activities of XRP 2868, pristinamycin, quinupristin-dalfopristin, vancomycin, daptomycin, linezolid, clarithromycin, telithromycin, clindamycin, and ampicillin against anaerobic gram-positive species, actinomycetes, and lactobacilli.
  • Citron2003 - In vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, bacitracin, and four other antimicrobials against intestinal anaerobic bacteria.
  • Citron2001 - Comparative in vitro activities of ABT-773 against 362 clinical isolates of anaerobic bacteria.
  • Goldstein2000a - Comparative In vitro activities of ertapenem (MK-0826) against 1,001 anaerobes isolated from human intra-abdominal infections.
  • Boekhorst2006 - Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria.
  • ...............................
  • GUT MICROBIOME COMPILATIONS AND METASTUDIES FOR LACTOBACILLUS ACIDOPHILUS
  • Almeida2019 - A new genomic blueprint of the human gut microbiota.
  • Benno1984 - The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants.
  • Byrd2020 - Stability and dynamics of the human gut microbiome and its association with systemic immune traits.
  • Chen2020 - Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine
  • Chen2020a - Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease
  • Dubinkina2017 - Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease
  • Finegold1974 - Effect of diet on human fecal flora: comparison of Japanese and American diets
  • Finegold1977 - Fecal microbial flora in Seventh Day Adventist populations and control subjects.
  • Forster2019 - A human gut bacterial genome and culture collection for improved metagenomic analyses.
  • Heilig2002 - Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA.
  • King2019 - Baseline human gut microbiota profile in healthy people and standard reporting template.
  • Lagier2016 - Culture of previously uncultured members of the human gut microbiota by culturomics.
  • Moore1974 - Human fecal flora: the normal flora of 20 Japanese-Hawaiians.
  • Moore1995 - Intestinal floras of populations that have a high risk of colon cancer
  • New2022 - Collective effects of human genomic variation on microbiome function.
  • RajilicStojanovic2014 - The first 1000 cultured species of the human gastrointestinal microbiota.
  • Rothschild2018 - Environment dominates over host genetics in shaping human gut microbiota.
  • Tyakht2013 - Human gut microbiota community structures in urban and rural populations in Russia.
  • Woodmansey2004 - Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects.
  • Yang2020 - Species-Level Analysis of Human Gut Microbiota With Metataxonomics.
  • Yang2020a - Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families
  • Zeller2014 - Potential of fecal microbiota for early-stage detection of colorectal cancer
  • Zupancic2012 - Analysis of the Gut Microbiota in the Old Order Amish and Its Relation to the Metabolic Syndrome.
  • deGoffau2013 - Fecal microbiota composition differs between children with β-cell autoimmunity and those without.
  • ...............................
  • GENERAL REFERENCES FOR LACTOBACILLUS ACIDOPHILUS
  • Ludwig2009 - Revised road map to the phylum Firmicutes.