General | Carbohydrate O/F | Substrate utilisation | Enzymes | Metabolites | Antibiotics

Overview


  • Lactococcus lactis subsp. lactis, (aka Lactococcus lactis), is a Gram-positive, non-spore-forming, facultatively anaerobic, non-motile, oval-shaped bacterium. It has been detected in at least 23 gut microbiome compilation studies or metastudies. The DNA G+C content is 33.4-36.3%. Lactococcus lactis subsp. lactis is often a widespread coloniser of gut. (Schleifer1985; Teuber2011Bergey; Terekhov2018)



  • This organism has been recovered from clinical sources (blood, wound - CCUG), sour milk, cheese starter cultures and human faeces. The risk classification (www.baua.de) for this organism is 1, i.e., low risk of infection and spread (notes: opportunistic in immunocompromised patients). Can cause opportunistic infections, particularly in immunocompromised people. Is a known gut commensal.

  • QUIRKS
  • Found in human breast milk (Jeurink2013).

  • GENERAL CHARACTERISTICS (Schleifer1985); (Teuber2011Bergey);
    Character Response
  • Substrates hydrolysed or digested:
  • aesculin; arginine;
  • 🧂
  • Salt tolerance:
  • tolerates 4% salt; doesn't tolerate 6.5% salt;
  • 💧
  • Bile tolerance:
  • Resistant to 40% bile
  • pH
  • Acidity tolerance:
  • tolerates pH 9.2;
  • 🌡
  • Temperature tolerance:
  • grows at 4℃; doesn't grow at 45℃;
  • H+
  • Acid from carbohydrates usually produced:
  • fructose; galactose; glucose; mannose; ribose; cellubiose; gentiobiose; lactose; maltose; trehalose; arbutin; N-Ac glucosamine; salicin;
  • ±
  • Strain-dependent acid from carbs:
  • amygdalin; starch; sucrose;
  • Substrates assimilated or utilised:
  • glucose; alanine; arginine; cysteine; glutamate; glycine; histidine; isoleucine; leucine; lysine; methionine; phenylalanine; proline; serine; threonine; tryptophan; tyrosine; valine; acetate; glutamine;
  • ±
  • Strain-dependent substrate utilisation:
  • citrate;
  • Active enzymes:
  • Ala arylamidase; Ala-Phe-Pro arylamidase; acid phosphatase; arginine dihydrolase; α-glucosidase; β-glucosidase; Gly arylamidase; Leu arylamidase; Leu-Gly arylamidase; lysine aminopeptidase;
  • ±
  • Strain-dependent active enzymes:
  • pyrrolidine arylamidase;

  • SPECIAL FEATURES (Schleifer1985); (Teuber2011Bergey);
    Character Response
  • Metabolites produced:
  • ammonia;
  • Metabolites not produced:
  • indole;
  • VP test:
  • active
  • Haemolysis:
  • absent
  • Nitrate:
  • not reduced
  • Pigments:
  • not produced

  • RESPONSE TO ANTIBIOTICS (Citron1997);
    Class Active Resistant
  • Penicillins:
  • amoxicillin; amoxicillin-clavulanic acid; imipenem; piperacillin-tazobactam;
  • Cephalosporins:
  • cefotetan; cefoxitin;
  • Quinolines:
  • levofloxacin; ofloxacin; trovafloxacin;
  • Miscellaneous antibiotics:
  • clindamycin;

  • N/A

  • Not only can this strain hydrolyze extracellular proteins, transport, and perform enzymolysis efficiently, but the strain has the more complete enzyme systems of transamination and the deamination pathway. Therefore, the strain can metabolize related proteins and produce a series of flavor compounds. Otherwise, the strain possesses more key enzyme-coding genes involved in transport, sugar metabolism, and synthesis for l-lactic acid, folate, and riboflavin, and it has a gene cluster for wool sulfur antibiotic and two genes of cold stress proteins CspD and CspE. [PMID: 24285665]

  • GutFeeling KnowledgeBase COMMENTS [Website]

    Lactococcus lactis is widely used in the production of fermented food products, such as yogurt and cheese. Some L. lactis strains have been extensively characterized functionally to document their probiotic attributes. The L. lactis strains are subdivided into two lineages, L. lactis subsp. cremoris and L. lactis subsp. lactis, based on their genotypes and phenotypes. The strain L. lactissubsp. lactis KLDS4.0325 was isolated in 2007. It was shown to have a characteristic pattern of high-yield l-lactic acid, to produce folate and riboflavin, and to possess antibacterial and antifreezing properties. [PMID: 24285665]

  • Finegold, S. M., Howard, R. A., & Vera, L. S. (1974). Effect of diet on human intestinal fecal flora: comparison of Japanese and American diets. Am. J. Clin. Nutr, 27, 1456–1469.


  • Details


    GENERAL
    Lineage Physiology General Growth Tolerances Hydrol./digest./degr.
    Phylum:  Firmicutes Class:  Bacilli Order:  Lactobacillales Family:  Streptococcaceae Genus:  Lactococcus Alt. name:  Lactococcus lactis Gram stain:  + O2 Relation.:  facultatively anaerobic Spore:  No spore Motility:  Sessile Morphology:  Oval-shaped Pigment:  neg
    Health:  Unknown
    Source:  clinical sources (blood, wound - CCUG), sour milk, cheese starter cultures and human faeces
    DNA G+C(%):  33.4-36.3
    Low T(℃):  4(+)
    High T(℃):  45(neg)
    NaCl 3-5%:  4(+)
    NaCl >6%:  6.5(neg)
    pH >8:  9.2(+)
    Bile reaction(%):  40(+)
    Aesculin:  + Urea:  neg Gelatin:  neg Starch:  neg Arginine:  + Hippurate:  vr

    CARBOHYDRATE ACID FORMATION
    Monosaccharide O/F Oligosaccharide O/F Polysaccharide O/F Polyol O/F Other O/F
    Arabinose:  neg D-Arabinose:  neg L-Arabinose:  neg Fructose:  + Fucose:  neg D-Fucose:  neg Galactose:  + Glucose:  + Mannose:  + D-Lyxose:  neg Rhamnose:  neg Ribose:  + Sorbose:  neg D-Tagatose:  neg Xylose:  vr L-Xylose:  neg Cellubiose:  d(+) Gentiobiose:  d(+) Lactose:  + Maltose:  + Melezitose:  neg Melibiose:  neg Sucrose:  d(neg) Trehalose:  + Turanose:  neg Amygdalin:  d(neg) Dextrin:  vr Glycogen:  neg Inulin:  neg Starch:  d Adonitol:  neg D-Arabitol:  neg L-Arabitol:  neg Dulcitol:  neg Erythritol:  neg Glycerol:  neg Inositol:  neg Mannitol:  vr Sorbitol:  neg Xylitol:  neg Arbutin:  d(+) Gluconate:  neg 2-Ketogluconate:  neg 5-Ketogluconate:  neg Me-α-D-Glc:  neg Me-α-D-Mann:  neg Me-Xyloside:  neg NAc-α-GA:  + Salicin:  d(+)

    SUBSTRATE ASSIMILATION & UTILISATION
    Monosaccharide util/assim Oligosaccharide util/assim Other carboh. util/assim Amino acid util/assim Organic acid util/assim
    Glucose:  + Melibiose:  neg Ala:  + Arg:  + Cys:  + Glu:  + Gly:  + His:  + Ile:  + Leu:  + Lys:  + Met:  + Phe:  + Pro:  + Ser:  + Thr:  + Trp:  + Tyr:  + Val:  + Acetate:  + Citrate:  d(neg)

    ENZYME ACTIVITY
    Enzymes: General Enzymes: Carbohydrate Enzymes: Protein Enzymes: Arylamidases Enzymes: Esters/fats
    Catalase:  neg Urease:  neg Ac-β-glcamnd:  neg α-Fucosidase:  neg α-Galactosidase:  neg β-Galactosidase:  neg α-Glucosidase:  + β-Glucosidase:  + β-Glucuronidase:  neg α-Mannosidase:  neg β-Mannosidase:  vr ArgDH:  + GluDC:  neg LysAP:  + AlanineAA:  + AlaPheProAA:  + GluGluAA:  neg GlyAA:  + LeuAA:  + LeuGlyAA:  + PyrrolidAA:  d(neg) AlkalineP:  neg AcidP:  + Esterase(C4):  neg EstLip(C8):  vr Lipase(C14):  neg

    METABOLITES - PRODUCTION & USE
    Fuel Usable Metabolites Metabolites Released Special Products Compounds Produced

    Ammonia:  + Indole:  neg Pigment:  neg

    ANTIBIOTICS ℞
    Penicillins & Penems (μg/mL) Cephalosporins (μg/mL) Aminoglycosides (μg/mL) Macrolides (μg/mL) Quinolones (μg/mL)
    amoxicillin:  SensRNG: (0.125-1)
    Augmentin:  S(MIC50): 0.5, MIC90: 0.5, RNG: (0.5)
    piper-taz:  S(MIC50): 0.5, MIC90: 0.5, RNG: (0.5–16)
    imipenem:  S(MIC50): 0.125, MIC90: 0.125, RNG: (0.125–2)
    cefotetan:  S(MIC50): 8, MIC90: 8, RNG: (0.5–128)
    cefoxitin:  S(MIC50): 8, MIC90: 8, RNG: (0.5–16)
    ciprofloxacin:  Var(MIC50): 1, MIC90: 2, RNG: (0.125–16)
    levofloxacin:  S(MIC50): 0.5, MIC90: 1, RNG: (0.25–8)
    ofloxacin:  S(MIC50): 1, MIC90: 2, RNG: (0.06–16)
    trovafloxacin:  S(MIC50): 0.03, MIC90: 0.06, RNG: (0.015–1)
    Tetracyclines (μg/mL) Vancomycin Class (μg/mL) Polypep/ketides (μg/mL) Heterocycles (μg/mL) Other (μg/mL)
    clindamycin:  S(MIC50): 0.5, MIC90: 0.5, RNG: (0.5–128)

    References


    SPECIFIC REFERENCES FOR LACTOCOCCUS LACTIS SUBSP. LACTIS
  • Schleifer1985 - Transfer of Streptococcus lactis and Related Streptococci to the Genus Lactococcus gen. nov.
  • Teuber2011Bergey - Bergey's manual of systematic bacteriology. Vol. 3, The Firmicutes. Family Streptococcaceae, Genus II. Lactococcus
  • Dubinkina2017 - Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease
  • Tarallo2019 - Altered Fecal Small RNA Profiles in Colorectal Cancer Reflect Gut Microbiome Composition in Stool Samples
  • Vatanen2018 - The human gut microbiome in early-onset type 1 diabetes from the TEDDY study
  • Ventura2019 - Gut microbiome of treatment-naïve MS patients of different ethnicities early in disease course
  • Citron1997 - Comparative in vitro activities of trovafloxacin (CP-99,219) against 221 aerobic and 217 anaerobic bacteria isolated from patients with intra-abdominal infections.
  • Boekhorst2006 - Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria.
  • Terekhov2018 - Ultrahigh-throughput functional profiling of microbiota communities.
  • ...............................
  • GUT MICROBIOME COMPILATIONS AND METASTUDIES FOR LACTOCOCCUS LACTIS SUBSP. LACTIS
  • Almeida2019 - A new genomic blueprint of the human gut microbiota.
  • Byrd2020 - Stability and dynamics of the human gut microbiome and its association with systemic immune traits.
  • Chen2020 - Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine
  • Chen2020a - Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease
  • Finegold1974 - Effect of diet on human fecal flora: comparison of Japanese and American diets
  • Finegold1977 - Fecal microbial flora in Seventh Day Adventist populations and control subjects.
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Jie2017 - The gut microbiome in atherosclerotic cardiovascular disease
  • Karlsson2013 - Gut metagenome in European women with normal, impaired and diabetic glucose control
  • King2019 - Baseline human gut microbiota profile in healthy people and standard reporting template.
  • Lagier2016 - Culture of previously uncultured members of the human gut microbiota by culturomics.
  • Mangin2004 - Molecular inventory of faecal microflora in patients with Crohn's disease.
  • New2022 - Collective effects of human genomic variation on microbiome function.
  • Pfleiderer2013 - Culturomics identified 11 new bacterial species from a single anorexia nervosa stool sample.
  • RajilicStojanovic2014 - The first 1000 cultured species of the human gastrointestinal microbiota.
  • Rothschild2018 - Environment dominates over host genetics in shaping human gut microbiota.
  • Taylor1985 - Nine-year microflora study of an isolator-maintained immunodeficient child.
  • Urban2020 - Altered Fecal Microbiome Years after Traumatic Brain Injury
  • Woodmansey2004 - Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects.
  • Yang2020 - Species-Level Analysis of Human Gut Microbiota With Metataxonomics.
  • Yang2020a - Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families
  • Zeller2014 - Potential of fecal microbiota for early-stage detection of colorectal cancer
  • Zou2019 - 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses.
  • Zupancic2012 - Analysis of the Gut Microbiota in the Old Order Amish and Its Relation to the Metabolic Syndrome.
  • ...............................
  • GENERAL REFERENCES FOR LACTOCOCCUS LACTIS SUBSP. LACTIS
  • Ludwig2009 - Revised road map to the phylum Firmicutes.