Odoribacter splanchnicus

(aka Bacteroides splanchnicus)

Bacteria


General | Carbohydrate O/F | Substrate utilisation | Enzymes | Metabolites | Antibiotics

Overview


  • Odoribacter splanchnicus, (aka Bacteroides splanchnicus), is a Gram-negative, non-spore-forming, strictly anaerobic, non-motile, rod-shaped bacterium. It has been detected in at least 29 gut microbiome compilation studies or metastudies. The DNA G+C content is 43.3%. Odoribacter splanchnicus is often a widespread coloniser of gut. (Hiippala2020; Song2010Bergeys)



  • This organism has been recovered from human faeces and clinical samples (blood, wound, abscess - CCUG). The risk classification (www.baua.de) for this organism is 2, i.e., risk of individual infection, but low risk of spread. It is an opportunistic pathogen. Is a known gut commensal. Robust growth can have positive consequences for gut health.

  • GENERAL CHARACTERISTICS (Hiippala2020); (Song2010Bergeys);
    Character Response
  • 💧
  • Bile tolerance:
  • Resistant to 20% bile
  • 🌡
  • Temperature tolerance:
  • grows at 37℃;
  • Active enzymes:
  • Ala arylamidase; alkaline phosphatase; N-Ac β-glucosaminidase; catalase; fucosidase; α-galactosidase; β-galactosidase; α-glucosidase; Leu arylamidase; Leu-Gly arylamidase;

  • SPECIAL FEATURES (Song2010Bergeys);
    Character Response
  • Metabolites produced:
  • acetate; propionate; butyrate (minor); lactate (trace); isobutyrate (minor); succinate; isovalerate (minor); indole;
  • Nitrate:
  • not reduced

  • RESPONSE TO ANTIBIOTICS (Song2010Bergeys); (Goldstein2000a); (Goldstein1991);
    Class Active Resistant
  • Penicillins:
  • amoxicillin; ampicillin; ampicillin-sulbactam; azlocillin; aztreonam; bacampicillin; benzylpenicillin; cloxacillin; dicloxacillin; imipenem; meropenem; oxacillin; piperacillin; piperacillin-tazobactam; ticarcillin; ticarcillin-clavulanic acid;
  • Cephalosporins:
  • cefaclor; cefazolin; cefdinir; cefepime; cefixime; cefmetazole; cefoperazone; cefotaxime; cefotetan; cefotiam; ceftazidime; cefuroxime; cephalothin; moxalactam;
  • cefadroxil;
  • Macrolides:
  • azithromycin; clarithromycin; erythromycin; josamycin; roxithromycin; spiramycin;
  • Tetracyclines:
  • chlortetracycline; doxycycline; meclocycline; methacycline; minocycline; oxytetracycline; tetracycline;
  • Quinolines:
  • ciprofloxacin; clavulanic-acid; clinafloxacin; enoxacin; gatifloxacin; moxifloxacin; norfloxacin; ofloxacin; pefloxacin; sarafloxacin; sparfloxacin;
  • nalidixic-acid; pipemidic-acid;
  • Aminoglycosides:
  • amikacin; dihydrostreptomycin; gentamicin; kanamycin; neomycin; sisomicin; spectinomycin; streptomycin; tobramycin;
  • Polypep/ketides:
  • rifabutin; rifampicin; rifapentine;
  • bacitracin;
  • Heterocycles:
  • chloramphenicol; fusidic-acid; metronidazole; nitrofurantoin; trimethoprim;
  • isoniazid; sulfadiazine; sulfadimethoxine; sulfamethoxazole; sulfanilamide;
  • Vancomycins:
  • vancomycin;
  • Miscellaneous antibiotics:
  • clindamycin; lincomycin; linezolid;
  • colistin;

  • NOTES

    Formerly known as Bacteroides splanchnicus. This a common inhabitant of the human gut.

    Fuel sources used:
    It can use fibre, resistant starch, simple sugars (including lactose), protein and mucus as energy sources.

    Metabolites produced:
    Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, ammonia, BCAAs, butyrate, GABA, lactate, LPS, propionate, succinate, cobalamin, folate, biotin, riboflavin.

    Metabolites consumed:
    In addition, our genomic analysis indicates that most members of this species do not consume any reported metabolites.

    Emerging research:
    This species has been negatively correlated with insulin resistance in postmenopausal obese women, suggesting it may have a beneficial role in metabolism. Another study observed this species was reduced in women with bladder pain syndrome.

  • References: [1] [2] [3]

  • This strain is able to ferment glucose, fructose, galactose, arabinose, lactose and mannose but not sucrose, rhamnose, trehalose or salicin. It produces large quantities of H(2) and H(2)S (adapted from PMID 21677857). [UP000006657]

  • GutFeeling KnowledgeBase COMMENTS [Website]

    Odoribacter splanchnicus strain 1651/6T was isolated as Bacteroides splanchnicus from a human abdominal abscess in 1971. Its name means bad smelling rod from innards. It is the type species for Odoribacter. While usually found in the intestines it has the potential to be an opportunistic pathogen. Cells are short rods (0.7 by 1.0-5.0 um) which occur singly or in loosely associated groups although they can also be pleomorphic. It is non-motile and strictly anaerobic, and is able to ferment glucose, fructose, galactose, arabinose, lactose and mannose but not sucrose, rhamnose, trehalose or salicin. It produces large quantities of H(2) and H(2)S (adapted from PMID 21677857). [UP000006657]

  • Werner, H., Rintelen, G., & Kunstek-Santos, H. (1975). A new butyric acid-producing bacteroides species: B. splanchnicus n. sp. (author’s transl). Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe A: Medizinische Mikrobiologie und Parasitologie, 231(1–3), 133–144.


  • Details


    GENERAL
    Lineage Physiology General Growth Tolerances Hydrol./digest./degr.
    Phylum:  Bacteroidetes Class:  Bacteroidia Order:  Bacteroidales Family:  Odoribacteraceae Genus:  Odoribacter Alt. name:  Bacteroides splanchnicus Gram stain:  neg O2 Relation.:  strictly anaerobic Spore:  No spore Motility:  Sessile Morphology:  Rod
    Health:   Positive
    Source:  human faeces and clinical samples (blood, wound, abscess - CCUG)
    DNA G+C(%):  43.3
    Mid T(℃):  37(+)
    Bile reaction(%):  20(+)
    Urea:  neg Gelatin:  w

    CARBOHYDRATE ACID FORMATION
    Monosaccharide O/F Oligosaccharide O/F Polysaccharide O/F Polyol O/F Other O/F
    Mannose:  neg

    ENZYME ACTIVITY
    Enzymes: General Enzymes: Carbohydrate Enzymes: Protein Enzymes: Arylamidases Enzymes: Esters/fats
    Catalase:  + Urease:  neg Ac-β-glcamnd:  + α-Fucosidase:  + α-Galactosidase:  + β-Galactosidase:  + α-Glucosidase:  + β-Glucosidase:  neg β-Glucuronidase:  neg α-Mannosidase:  neg ArgDH:  neg GluDC:  vr AlanineAA:  + GluGluAA:  vr GlyAA:  vr LeuAA:  + LeuGlyAA:  + PyrrolidAA:  vr AlkalineP:  + AcidP:  neg Esterase(C4):  vr EstLip(C8):  vr Lipase(C14):  neg

    METABOLITES - PRODUCTION & USE
    Fuel Usable Metabolites Metabolites Released Special Products Compounds Produced

    Acetate:  + Propionate:  + Butyrate:  minor(+) Lactate:  trace(+) Isobutyrate:  minor(+) Succinate:  + Isovalerate:  minor(+) Indole:  +

    ANTIBIOTICS ℞
    Penicillins & Penems (μg/mL) Cephalosporins (μg/mL) Aminoglycosides (μg/mL) Macrolides (μg/mL) Quinolones (μg/mL)
    amoxicillin:  Sens
    ampicillin:  Sens
    amp-sulb:  S(MIC50): 0.5, MIC90: -, RNG: (0.5)
    azlocillin:  Sens
    aztreonam:  Sens
    bacampicillin:  Sens
    benzyl-pen:  Sens
    cloxacillin:  Sens
    dicloxacillin:  Sens
    oxacillin:  Sens
    piperacillin:  Sens
    piper-taz:  S(MIC50): 0.06, MIC90: -, RNG: (0.06–0.5)
    ticarcillin:  Sens
    tica-clav:  S(MIC50): 0.06, MIC90: -, RNG: (0.06–0.5)
    imipenem:  S(MIC50): 0.062, MIC90: 0.25, RNG: (0.06-0.25)
    meropenem:  S(MIC50): 0.062, MIC90: 0.5, RNG: (0.06-0.5)
    cefaclor:  Sens
    cefadroxil:  Res
    cefazolin:  Sens
    cefdinir:  Sens
    cefepime:  Sens
    cefixime:  Sens
    cefmetazole:  Sens
    cefoperazone:  Sens
    cefotaxime:  Sens
    cefotetan:  Sens
    cefotiam:  Sens
    cefoxitin:  Var(MIC50): 1, MIC90: 8, RNG: (1-8)
    ceftazidime:  Sens
    cefuroxime:  Sens
    cephalothin:  Sens
    moxalactam:  Sens
    amikacin:  Res
    dihydrostrept:  Res
    gentamicin:  Res
    kanamycin:  Res
    neomycin:  Res
    sisomicin:  Res
    spectinomycin:  Res
    streptomycin:  Res
    tobramycin:  Res
    azithromycin:  Sens
    erythromycin:  Sens
    clarithromycin:  Sens
    roxithromycin:  Sens
    spiramycin:  Sens
    josamycin:  Sens
    linezolid:  Sens
    ciprofloxacin:  Sens
    clavulanate:  Sens
    clinafloxacin:  Sens
    enoxacin:  Sens
    gatifloxacin:  Sens
    moxifloxacin:  Sens
    nalidixic-acid:  Res
    norfloxacin:  Sens
    ofloxacin:  S(MIC50): 2, MIC90: 4, RNG: (0.25-8)
    pefloxacin:  Sens
    pipemidic_acid:  Res
    sarafloxacin:  Sens
    sparfloxacin:  Sens
    Tetracyclines (μg/mL) Vancomycin Class (μg/mL) Polypep/ketides (μg/mL) Heterocycles (μg/mL) Other (μg/mL)
    doxycycline:  Sens
    chlortetracycline:  Sens
    meclocycline:  Sens
    methacycline:  Sens
    minocycline:  Sens
    oxytetracycline:  Sens
    tetracycline:  Sens
    vancomycin:  Res
    bacitracin:  Res
    rifabutin:  Sens
    rifampicin:  Sens
    rifapentine:  Sens
    chloramphenicol:  S(MIC50): 4, MIC90: -, RNG: (2–16)
    isoniazid:  Res
    metronidazole:  S(MIC50): 0.25, MIC90: -, RNG: (0.06–0.5)
    nitrofurantoin:  Sens
    sulfadiazine:  Res
    sulfadimethoxine:  Res
    sulfamethoxazole:  Res
    sulfanilamide:  Res
    trimethoprim:  Sens
    clindamycin:  S(MIC50): 0.06, MIC90: -, RNG: (0.06->32)
    lincomycin:  Sens
    colistin:  Res
    fusidic-acid:  Sens

    References


    SPECIFIC REFERENCES FOR ODORIBACTER SPLANCHNICUS
  • Hiippala2020 - Novel Odoribacter splanchnicus Strain and Its Outer Membrane Vesicles Exert Immunoregulatory Effects in vitro.
  • Shah1989 - Proposal To Restrict the Genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and Closely Related Species.
  • Song2010Bergeys - Bacteroides. In Bergey's manual of systematic bacteriology: Vol. 4. The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes
  • Feng2015 - Gut microbiome development along the colorectal adenoma-carcinoma sequence
  • DeAngelis2013 - Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified
  • Giongo2011 - Toward defining the autoimmune microbiome for type 1 diabetes
  • Luo2018 - Gut Microbiota in Human Systemic Lupus Erythematosus and a Mouse Model of Lupus
  • Malham2019 - The microbiome reflects diagnosis and predicts disease severity in paediatric onset inflammatory bowel disease
  • Qin2014 - Alterations of the human gut microbiome in liver cirrhosis
  • Wan2020 - Case-Control Study of the Effects of Gut Microbiota Composition on Neurotransmitter Metabolic Pathways in Children With Attention Deficit Hyperactivity Disorder
  • Wang2019b - Alterations in the human gut microbiome associated with Helicobacter pylori infection
  • Zhao2019a - Metagenome of Gut Microbiota of Children With Nonalcoholic Fatty Liver Disease
  • Luna2016 - Distinct Microbiome-Neuroimmune Signatures Correlate With Functional Abdominal Pain in Children With Autism Spectrum Disorder.
  • Goldstein2000a - Comparative In vitro activities of ertapenem (MK-0826) against 1,001 anaerobes isolated from human intra-abdominal infections.
  • Goldstein1991 - Goldstein EJ, Citron DM. Susceptibility of anaerobic bacteria isolated from intra-abdominal infections to ofloxacin and interaction of ofloxacin with metronidazole.
  • ...............................
  • GUT MICROBIOME COMPILATIONS AND METASTUDIES FOR ODORIBACTER SPLANCHNICUS
  • Benno1986 - Comparison of the fecal microflora in rural Japanese and urban Canadians.
  • Benno1989 - Comparison of fecal microflora of elderly persons in rural and urban areas of Japan.
  • Byrd2020 - Stability and dynamics of the human gut microbiome and its association with systemic immune traits.
  • Chen2020 - Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine
  • Chen2020a - Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease
  • Chung2019 - Impact of carbohydrate substrate complexity on the diversity of the human colonic microbiota.
  • Dubinkina2017 - Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease
  • Finegold1977 - Fecal microbial flora in Seventh Day Adventist populations and control subjects.
  • Forster2019 - A human gut bacterial genome and culture collection for improved metagenomic analyses.
  • Holdeman1976 - Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress.
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Jeong2021 - The effect of taxonomic classification by full-length 16S rRNA sequencing with a synthetic long-read technology
  • Jie2017 - The gut microbiome in atherosclerotic cardiovascular disease
  • King2019 - Baseline human gut microbiota profile in healthy people and standard reporting template.
  • Lagier2016 - Culture of previously uncultured members of the human gut microbiota by culturomics.
  • MacFarlane2004 - Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis.
  • Mangin2004 - Molecular inventory of faecal microflora in patients with Crohn's disease.
  • McLaughlin2010 - The bacteriology of pouchitis: a molecular phylogenetic analysis using 16S rRNA gene cloning and sequencing.
  • Minerbi2019 - Altered microbiome composition in individuals with fibromyalgia
  • New2022 - Collective effects of human genomic variation on microbiome function.
  • Nielsen2014 - MetaHIT Consortium. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.
  • RajilicStojanovic2014 - The first 1000 cultured species of the human gastrointestinal microbiota.
  • Rothschild2018 - Environment dominates over host genetics in shaping human gut microbiota.
  • Salonen2014 - Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men.
  • Walker2011 - High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease.
  • Wang2018 - A metagenome-wide association study of gut microbiota in asthma in UK adults
  • Wang2018a - Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model.
  • Wang2020a - Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents
  • Zeller2014 - Potential of fecal microbiota for early-stage detection of colorectal cancer
  • Zou2019 - 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses.
  • ...............................
  • GENERAL REFERENCES FOR ODORIBACTER SPLANCHNICUS
  • Hiippala2020a - Isolation of Anti-Inflammatory and Epithelium Reinforcing Bacteroides and Parabacteroides Spp. from A Healthy Fecal Donor.