Parabacteroides distasonis

(aka Bacteroides distasonis)

Bacteria


General | Carbohydrate O/F | Substrate utilisation | Enzymes | Metabolites | Antibiotics

Overview


  • Parabacteroides distasonis, (aka Bacteroides distasonis), is a Gram-negative, non-spore-forming, strictly anaerobic, non-motile, rod-shaped bacterium. It has been detected in at least 43 gut microbiome compilation studies or metastudies. The DNA G+C content is 44%. Parabacteroides distasonis is often a widespread coloniser of gut. (Eggerth1933; Sakamoto2006; Song2010aBergey; Terekhov2018; Cato1976a)



  • This organism has been recovered from human faeces and clinical sources (blood - CCUG). The risk classification (www.baua.de) for this organism is 2, i.e., risk of individual infection, but low risk of spread. Is a rare opportunistic pathogen. Is a known gut commensal.

  • GENERAL CHARACTERISTICS (Eggerth1933); (Sakamoto2006); (Song2010aBergey); (Cato1976a);
    Character Response
  • Substrates hydrolysed or digested:
  • aesculin; starch;
  • ±
  • Strain-dependent hydrolysis or digestion:
  • milk;
  • 💧
  • Bile tolerance:
  • Resistant to 20% bile
  • H+
  • Acid from carbohydrates usually produced:
  • fructose; galactose; glucose; mannose; rhamnose; xylose; amygdalin; inulin; cellubiose; lactose; maltose; melezitose; raffinose; sucrose; trehalose; salicin;
  • ±
  • Strain-dependent acid from carbs:
  • aesculin; starch;
  • Substrates assimilated or utilised:
  • glucosamine; D-glucuronate;
  • Active enzymes:
  • Ala arylamidase; alkaline phosphatase; arabinosidase; N-Ac β-glucosaminidase; catalase; α-galactosidase; β-galactosidase; α-glucosidase; β-glucosidase; Glu-Glu arylamidase; Gly arylamidase; His arylamidase; Leu arylamidase; Leu-Gly arylamidase; Phe arylamidase; Ser arylamidase; Tyr arylamidase;

  • SPECIAL FEATURES (Eggerth1933); (Sakamoto2006); (Song2010aBergey); (Cato1976a);
    Character Response
  • Metabolites produced:
  • acetate (minor); propionate; lactate (major); isobutyrate (trace); succinate; isovalerate (minor); H₂S;
  • Metabolites not produced:
  • indole;
  • Nitrate:
  • not reduced
  • Pigments:
  • not produced

  • RESPONSE TO ANTIBIOTICS (Song2010aBergey); (Goldstein2018a); (Goldstein2013a); (Goldstein2013b); (Tyrrell2012); (Citron2012a); (Goldstein2008); (Goldstein2006a); (Citron2003); (Betriu2001); (Citron2001); (Goldstein1999); (Schaumann1999);
    Class Active Resistant
  • Penicillins:
  • ampicillin-sulbactam; azlocillin; benzylpenicillin; doripenem; ertapenem; imipenem; meropenem; piperacillin-tazobactam; ticarcillin;
  • ampicillin; aztreonam; bacampicillin; cloxacillin; dicloxacillin; oxacillin; penicillin; penicillin G; piperacillin;
  • Cephalosporins:
  • cefazolin; cefdinir; cefoxitin; cephalothin;
  • cefadroxil; cefamandole; cefepime; cefmetazole; cefoperazone; cefotetan; cefotiam; ceftazidime; ceftizoxime; cefuroxime; moxalactam;
  • Macrolides:
  • josamycin; spiramycin;
  • azithromycin; clarithromycin; erythromycin; fidaxomicin; quinupristin-dalfopristin; roxithromycin; telithromycin;
  • Tetracyclines:
  • chlortetracycline; doxycycline; meclocycline; methacycline; minocycline; oxytetracycline; tetracycline;
  • Quinolines:
  • clinafloxacin; enoxacin; garenoxacin; gatifloxacin; levofloxacin; ofloxacin; sarafloxacin; trovafloxacin;
  • clavulanic-acid; moxifloxacin; nalidixic-acid; norfloxacin; pefloxacin; pipemidic-acid;
  • Aminoglycosides:
  • amikacin; dihydrostreptomycin; gentamicin; kanamycin; neomycin; sisomicin; spectinomycin; streptomycin; tobramycin;
  • Polypep/ketides:
  • rifabutin; rifampicin; rifapentine;
  • bacitracin;
  • Heterocycles:
  • chloramphenicol; fusidic-acid; metronidazole; nitrofurantoin;
  • isoniazid; sulfadiazine; sulfadimethoxine; sulfamethoxazole; sulfanilamide; trimethoprim;
  • Vancomycins:
  • vancomycin; teicoplanin;
  • Miscellaneous antibiotics:
  • lincomycin; ranbezolid;
  • daptomycin; colistin; telithromycin;

  • NOTES

    Formerly known as Bacteroides distasonis. This is a common inhabitant of the human gut.

    Fuel sources used:
    It can use fibre, resistant starch, simple sugars (including lactose), protein and mucus for energy.

    Metabolites produced:
    Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, BCAAs, GABA, lactate, LPS, propionate, succinate, cobalamin, folate, biotin, riboflavin.

    Metabolites consumed:
    In addition, our genomic analysis indicates that most members of this species do not consume any reported metabolites.

    Disease associations:
    High levels of this species have been observed in individuals with colon cancer and in pregnant women with gestational diabetes. Low levels of this species have been observed in individuals with chronic fatigue syndrome.

  • References: [1] [2] [3] [4] [5] [6]

  • Major end-products of Parabacteriodes are acetic and succinic acids. Aesculin is hydrolysed. Indole is not produced. Glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), malate dehydrogenase and glutamate dehydrogenase are present. [PMID: 16825636]

  • GutFeeling KnowledgeBase COMMENTS [Website]

    Parabacteroides distasonis (also known as Bacteroides distasonis) is a member of the normal distal human gut microbiota. The distal gut microbiota contain more bacterial cells than all of our body's other microbial communities combined. More than 90% of phylogenetic types belong to two divisions, the Bacteroidetes and the Firmicutes, with the remaining types distributed among eight other divisions. P. distasonis has the smallest genome among the sequenced human gut-associated Bacteroidetes, the smallest repertoire of genes involved in environmental sensing and gene regulation and the smallest number of genes associated with carbon source degradation. It lacks many accessory hemicellulases, pectinases and polysaccharidases that target non-plant carbohydrates. [UP000000566]

  • Eggerth, A. H., & Gagnon, B. H. (1933). The Bacteroides of human feces. Journal of Bacteriology, 25(4), 389–413.


  • Details


    GENERAL
    Lineage Physiology General Growth Tolerances Hydrol./digest./degr.
    Phylum:  Bacteroidetes Class:  Bacteroidia Order:  Bacteroidales Family:  Tannerellaceae Genus:  Parabacteroides Alt. name:  Bacteroides distasonis Gram stain:  neg O2 Relation.:  strictly anaerobic Spore:  No spore Motility:  Sessile Morphology:  Rod Pigment:  neg
    Health:  Unknown
    Source:  human faeces and clinical sources (blood - CCUG)
    DNA G+C(%):  44
    Bile reaction(%):  20(+)
    Aesculin:  + Urea:  neg Gelatin:  neg Starch:  + Milk:  curdle

    CARBOHYDRATE ACID FORMATION
    Monosaccharide O/F Oligosaccharide O/F Polysaccharide O/F Polyol O/F Other O/F
    Arabinose:  neg L-Arabinose:  neg Fructose:  + Fucose:  neg Galactose:  + Glucose:  + Mannose:  + Rhamnose:  + Xylose:  + Cellubiose:  + Lactose:  + Maltose:  + Melezitose:  + Sucrose:  + Trehalose:  + Amygdalin:  + Aesculin:  d Glycogen:  neg Inulin:  + Starch:  d Dulcitol:  neg Erythritol:  neg Glycerol:  neg Inositol:  neg Mannitol:  neg Sorbitol:  neg Salicin:  +

    SUBSTRATE ASSIMILATION & UTILISATION
    Monosaccharide util/assim Oligosaccharide util/assim Other carboh. util/assim Amino acid util/assim Organic acid util/assim
    Glucosamine:  +

    ENZYME ACTIVITY
    Enzymes: General Enzymes: Carbohydrate Enzymes: Protein Enzymes: Arylamidases Enzymes: Esters/fats
    Catalase:  + Urease:  neg G6PDH6PGDH:  neg α-Arab:  + Ac-β-glcamnd:  + α-Fucosidase:  neg α-Galactosidase:  + β-Galactosidase:  + α-Glucosidase:  + β-Glucosidase:  + β-Glucuronidase:  neg ArgDH:  neg GluDC:  vr AlanineAA:  + GluGluAA:  + GlyAA:  + HisAA:  + LeuAA:  + LeuGlyAA:  + PyrrolidAA:  vr PheAA:  + PyrogluAA:  neg SerAA:  + TyrAA:  + AlkalineP:  +

    METABOLITES - PRODUCTION & USE
    Fuel Usable Metabolites Metabolites Released Special Products Compounds Produced

    Acetate:  minor(+) Propionate:  + Lactate:  Major(+) Isobutyrate:  trace(+) Succinate:  + Isovalerate:  minor(+) H2S:  + Indole:  neg Pigment:  neg

    ANTIBIOTICS ℞
    Penicillins & Penems (μg/mL) Cephalosporins (μg/mL) Aminoglycosides (μg/mL) Macrolides (μg/mL) Quinolones (μg/mL)
    amoxicillin:  Var(MIC50): 2, MIC90: >128, RNG: (2->128)
    Augmentin:  Var(MIC50): 2, MIC90: 16, RNG: (0.125-32)
    ampicillin:  R(MIC50): 4, MIC90: >64, RNG: (2–>64)
    amp-sulb:  S(MIC50): 8, MIC90: 16, RNG: (0.5–32)
    azlocillin:  Sens
    aztreonam:  Res
    bacampicillin:  Res
    benzyl-pen:  Sens
    cloxacillin:  Res
    dicloxacillin:  Res
    oxacillin:  Res
    penicillin:  R(MIC50): >8, MIC90: >128, RNG: (2->128)
    penicillin_G:  R(MIC50): 16, MIC90: >64, RNG: (8–>64)
    piperacillin:  R(MIC50): 256, MIC90: >256, RNG: (4->256)
    piper-taz:  S(MIC50): 4, MIC90: 32, RNG: (2–32)
    ticarcillin:  Sens
    tica-clav:  Var(MIC50): 4, MIC90: 32, RNG: (0.125–>128)
    doripenem:  S(MIC50): 0.5, MIC90: 1, RNG: (0.25-1)
    ertapenem:  S(MIC50): 0.5, MIC90: 1, RNG: (0.5-2)
    imipenem:  S(MIC50): 0.5, MIC90: 0.5, RNG: (0.06-8)
    meropenem:  S(MIC50): 0.25, MIC90: 0.5, RNG: (0.06-4)
    cefaclor:  Var(MIC50): 8, MIC90: 8
    cefadroxil:  Res
    cefamandole:  R(64/>64)
    cefazolin:  Sens
    cefdinir:  Sens
    cefepime:  R(MIC50): >128, MIC90: >128, RNG: (16–>128)
    cefixime:  Var(MIC50): 1, MIC90: 16, RNG: (1-16)
    cefmetazole:  R(MIC50): 64, MIC90: 128, RNG: (16->128)
    cefoperazone:  R(MIC50): 32, MIC90: 256, RNG: (16-256)
    cefotaxime:  Var(MIC50): 2, MIC90: 32, RNG: (2-32)
    cefotetan:  R(MIC50): 128, MIC90: 256, RNG: (≤0.06-256)
    cefotiam:  R(MIC50): >128, MIC90: >128, RNG: (32->128)
    cefoxitin:  S(MIC50): 16, MIC90: 32, RNG: (8–64)
    cefpodoxime:  Var(MIC50): 0.5, MIC90: >64, RNG: (0.25->64)
    cefprozil:  Var(MIC50): 8, MIC90: 16, RNG: (8-16)
    ceftazidime:  R(MIC50): 64, MIC90: >256, RNG: (32->256)
    ceftizoxime:  R(MIC50): 32, MIC90: 128, RNG: (4-128)
    cefuroxime:  R(MIC50): 16, MIC90: 64, RNG: (0.5->64)
    cephalothin:  Sens
    moxalactam:  R(MIC50): 64, MIC90: >128, RNG: (16->128)
    amikacin:  Res
    dihydrostrept:  Res
    gentamicin:  Res
    kanamycin:  Res
    neomycin:  Res
    sisomicin:  Res
    spectinomycin:  Res
    streptomycin:  Res
    tobramycin:  Res
    azithromycin:  R(MIC50): >32, MIC90: >32, RNG: (32–>32)
    erythromycin:  R(MIC50): 32, MIC90: >32, RNG: (4–>32)
    fidaxomicin:  R(MIC50): >512, MIC90: >512, RNG: (>512)
    clarithromycin:  R(MIC50): 4, MIC90: >32, RNG: (0.5–>32)
    quin-dalf:  R(MIC50): >8, MIC90: >8, RNG: (8->8)
    roxithromycin:  R(MIC50): 32, MIC90: >32, RNG: (0.5–>32)
    spiramycin:  Sens
    telithromycin:  R(MIC50): 8, MIC90: >32, RNG: (1–>32)
    josamycin:  Sens
    linezolid:  Var(MIC50): 4, MIC90: 4, RNG: (4-)
    ciprofloxacin:  Var(MIC50): 4, MIC90: 8, RNG: (2->32)
    clavulanate:  Res
    clinafloxacin:  S(MIC50): 0.06, MIC90: 0.25, RNG: (0.03-0.25)
    enoxacin:  Sens
    garenoxacin:  S(MIC50): 0.25, MIC90: 0.5, RNG: (0.125-8)
    gatifloxacin:  S(MIC50): 1, MIC90: 1, RNG: (0.25-2)
    gemifloxacin:  Var(MIC50): 1, MIC90: 16, RNG: (0.5–>16)
    levofloxacin:  S(MIC50): 2, MIC90: 2, RNG: (1-32)
    moxifloxacin:  R(MIC50): 8, MIC90: 16, RNG: (0.5–16)
    nalidixic-acid:  Res
    norfloxacin:  Res
    ofloxacin:  S(MIC50): 2, MIC90: 8, RNG: (2-64)
    pefloxacin:  Res
    pipemidic_acid:  Res
    sarafloxacin:  Sens
    sparfloxacin:  Var(MIC50): 2, MIC90: >16, RNG: (2–>16)
    trovafloxacin:  S(MIC50): 0.5, MIC90: 1, RNG: (≤0.06-4)
    Tetracyclines (μg/mL) Vancomycin Class (μg/mL) Polypep/ketides (μg/mL) Heterocycles (μg/mL) Other (μg/mL)
    doxycycline:  Sens
    chlortetracycline:  Sens
    meclocycline:  Sens
    methacycline:  Sens
    minocycline:  Sens
    oxytetracycline:  Sens
    tetracycline:  Sens
    tigecycline:  Var(MIC50): 2, MIC90: 8, RNG: (0.5-16)
    teicoplanin:  R(MIC50): 64, MIC90: 128, RNG: (16–128)
    vancomycin:  R(MIC50): 64, MIC90: 128, RNG: (32–256)
    bacitracin:  R(MIC50): >256, MIC90: >256, RNG: (16–>256)
    rifabutin:  Sens
    rifampicin:  Sens
    rifapentine:  Sens
    chloramphenicol:  S(MIC50): 4, MIC90: 8, RNG: (1-8)
    isoniazid:  Res
    metronidazole:  S(MIC50): 1, MIC90: 2, RNG: (0.5-4)
    nitrofurantoin:  Sens
    ranbezolid:  S(MIC50): 0.016, MIC90: 0.016, RNG: (≤0.008-0.06)
    sulfadiazine:  Res
    sulfadimethoxine:  Res
    sulfamethoxazole:  Res
    sulfanilamide:  Res
    trimethoprim:  Res
    clindamycin:  Var(MIC50): 2, MIC90: 4, RNG: (0.5-16)
    lincomycin:  Sens
    daptomycin:  R(MIC50): >32, MIC90: >32, RNG: (>32)
    colistin:  Res
    fusidic-acid:  Sens

    References


    SPECIFIC REFERENCES FOR PARABACTEROIDES DISTASONIS
  • Eggerth1933 - The Bacteroides of Human Feces.
  • Sakamoto2006 - Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov.
  • Wexler2007 - Bacteroides : the Good, the Bad, and the Nitty-Gritty.
  • Song2010aBergey - Bacteroides. In Bergey's manual of systematic bacteriology: Vol. 4. The Bacteroidetes. Family IV. Porphyromonadaceae, Genus V. Parabacteroides
  • Terekhov2018 - Ultrahigh-throughput functional profiling of microbiota communities.
  • Feng2015 - Gut microbiome development along the colorectal adenoma-carcinoma sequence
  • Bervoets2013 - Differences in gut microbiota composition between obese and lean children: a cross-sectional study
  • Borren2020 - Alterations in Fecal Microbiomes and Serum Metabolomes of Fatigued Patients With Quiescent Inflammatory Bowel Diseases
  • Coretti2018 - Gut Microbiota Features in Young Children With Autism Spectrum Disorders
  • Debyser2016 - Faecal proteomics: A tool to investigate dysbiosis and inflammation in patients with cystic fibrosis
  • Finegold2010 - Pyrosequencing study of fecal microflora of autistic and control children
  • Fukugaiti2015 - High occurrence of Fusobacterium nucleatum and Clostridium difficile in the intestinal microbiota of colorectal carcinoma patients
  • GallardoBecerra2020 - Metatranscriptomic analysis to define the Secrebiome, and 16S rRNA profiling of the gut microbiome in obesity and metabolic syndrome of Mexican children
  • Gargari2018 - Evidence of dysbiosis in the intestinal microbial ecosystem of children and adolescents with primary hyperlipidemia and the potential role of regular hazelnut intake
  • Giongo2011 - Toward defining the autoimmune microbiome for type 1 diabetes
  • Huang2019 - Analysis of microbiota in elderly patients with Acute Cerebral Infarction
  • Huang2019a - Metagenome-wide association study of the alterations in the intestinal microbiome composition of ankylosing spondylitis patients and the effect of traditional and herbal treatment
  • Iwasawa2016 - Characterisation of the faecal microbiota in Japanese patients with paediatric-onset primary sclerosing cholangitis
  • Jackson2016 - Signatures of early frailty in the gut microbiota
  • Li2019c - Gut Microbiota Differs Between Parkinson's Disease Patients and Healthy Controls in Northeast China
  • Liu2019a - The intestinal microbiota associated with cardiac valve calcification differs from that of coronary artery disease
  • MorenoArrones2019 - Analysis of the gut microbiota in alopecia areata: identification of bacterial biomarkers
  • Qin2014 - Alterations of the human gut microbiome in liver cirrhosis
  • Sokol2019 - Intestinal dysbiosis in inflammatory bowel disease associated with primary immunodeficiency
  • Tsuji2018 - Gut Microbiota Dysbiosis in Children with Relapsing Idiopathic Nephrotic Syndrome
  • vanDijkhuizen2019 - Microbiome Analytics of the Gut Microbiota in Patients With Juvenile Idiopathic Arthritis: A Longitudinal Observational Cohort Study
  • Zheng2020a - Specific gut microbiome signature predicts the early-stage lung cancer
  • Mondot2011 - Highlighting new phylogenetic specificities of Crohn's disease microbiota.
  • Goldstein2018a - Comparative In Vitro Activities of Relebactam, Imipenem, the Combination of the Two, and Six Comparator Antimicrobial Agents against 432 Strains of Anaerobic Organisms, Including Imipenem-Resistant Strains.
  • Goldstein2013a - Comparative in vitro activities of SMT19969, a new antimicrobial agent, against Clostridium difficile and 350 gram-positive and gram-negative aerobic and anaerobic intestinal flora isolates.
  • Goldstein2013b - Comparative in vitro activities of GSK2251052, a novel boron-containing leucyl-tRNA synthetase inhibitor, against 916 anaerobic organisms.
  • Tyrrell2012 - In vitro activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic, against 377 strains of anaerobic bacteria and 34 strains of Corynebacterium species.
  • Citron2012a - Comparative in vitro activities of LFF571 against Clostridium difficile and 630 other intestinal strains of aerobic and anaerobic bacteria.
  • Goldstein2008 - In vitro activities of doripenem and six comparator drugs against 423 aerobic and anaerobic bacterial isolates from infected diabetic foot wounds.
  • Goldstein2006a - In vitro activity of ceftobiprole against aerobic and anaerobic strains isolated from diabetic foot infections.
  • Citron2003 - In vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, bacitracin, and four other antimicrobials against intestinal anaerobic bacteria.
  • Betriu2001 - In vitro activities of MK-0826 and 16 other antimicrobials against Bacteroides fragilis group strains.
  • Citron2001 - Comparative in vitro activities of ABT-773 against 362 clinical isolates of anaerobic bacteria.
  • Goldstein1999 - In vitro activity of gemifloxacin (SB 265805) against anaerobes.
  • Schaumann1999 - In vitro activities of gatifloxacin, two other quinolones, and five nonquinolone antimicrobials against obligately anaerobic bacteria.
  • Cato1976a - Reinstatement of Species Rank for Bacteroides fragilis, B. ovatus, B. distasonis, B. thetaiotaomicron, and B. vulgatus: Designation of Neotype Strains for Bacteroides fragilis (Veillon and Zuber) Castellani and Chalmers and Bacteroides thetaiotaomicron (Distaso) Castellani and Chalmers.
  • ...............................
  • GUT MICROBIOME COMPILATIONS AND METASTUDIES FOR PARABACTEROIDES DISTASONIS
  • Benno1984 - The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants.
  • Benno1986 - Comparison of the fecal microflora in rural Japanese and urban Canadians.
  • Benno1989 - Comparison of fecal microflora of elderly persons in rural and urban areas of Japan.
  • Browne2016 - Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation.
  • Byrd2020 - Stability and dynamics of the human gut microbiome and its association with systemic immune traits.
  • Chen2020 - Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine
  • Chen2020a - Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease
  • Chung2019 - Impact of carbohydrate substrate complexity on the diversity of the human colonic microbiota.
  • Dubinkina2017 - Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease
  • Finegold1974 - Effect of diet on human fecal flora: comparison of Japanese and American diets
  • Finegold1977 - Fecal microbial flora in Seventh Day Adventist populations and control subjects.
  • Forster2019 - A human gut bacterial genome and culture collection for improved metagenomic analyses.
  • Holdeman1976 - Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress.
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Jeong2021 - The effect of taxonomic classification by full-length 16S rRNA sequencing with a synthetic long-read technology
  • Jie2017 - The gut microbiome in atherosclerotic cardiovascular disease
  • King2019 - Baseline human gut microbiota profile in healthy people and standard reporting template.
  • Lagier2016 - Culture of previously uncultured members of the human gut microbiota by culturomics.
  • Li2019b - Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus
  • MacFarlane2004 - Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis.
  • Mangin2004 - Molecular inventory of faecal microflora in patients with Crohn's disease.
  • McLaughlin2010 - The bacteriology of pouchitis: a molecular phylogenetic analysis using 16S rRNA gene cloning and sequencing.
  • Minerbi2019 - Altered microbiome composition in individuals with fibromyalgia
  • Moore1995 - Intestinal floras of populations that have a high risk of colon cancer
  • New2022 - Collective effects of human genomic variation on microbiome function.
  • Nielsen2014 - MetaHIT Consortium. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.
  • PerezBrocal2015 - Metagenomic Analysis of Crohn's Disease Patients Identifies Changes in the Virome and Microbiome Related to Disease Status and Therapy, and Detects Potential Interactions and Biomarkers
  • Pfleiderer2013 - Culturomics identified 11 new bacterial species from a single anorexia nervosa stool sample.
  • Qin2012 - Metagenome-wide association study of gut microbiota in type 2 diabetes
  • RajilicStojanovic2014 - The first 1000 cultured species of the human gastrointestinal microbiota.
  • Rothschild2018 - Environment dominates over host genetics in shaping human gut microbiota.
  • Salonen2014 - Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men.
  • Tyakht2013 - Human gut microbiota community structures in urban and rural populations in Russia.
  • Urban2020 - Altered Fecal Microbiome Years after Traumatic Brain Injury
  • Walker2011 - High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease.
  • Wang2005 - Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes.
  • Wang2018 - A metagenome-wide association study of gut microbiota in asthma in UK adults
  • Wang2018a - Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model.
  • Wang2020a - Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents
  • Woodmansey2004 - Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects.
  • Yang2020 - Species-Level Analysis of Human Gut Microbiota With Metataxonomics.
  • Yang2020a - Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families
  • Zeller2014 - Potential of fecal microbiota for early-stage detection of colorectal cancer
  • Zou2019 - 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses.
  • Zupancic2012 - Analysis of the Gut Microbiota in the Old Order Amish and Its Relation to the Metabolic Syndrome.
  • ...............................
  • GENERAL REFERENCES FOR PARABACTEROIDES DISTASONIS
  • CCUG - Culture Collection University of Gothenburg - Entire Collection