General | Carbohydrate O/F | Substrate utilisation | Enzymes | Metabolites | Antibiotics

Overview


  • Prevotella copri is a Gram-negative, non-spore-forming, strictly anaerobic, non-motile, rod-shaped bacterium. It has been detected in at least 28 gut microbiome compilation studies or metastudies. The DNA G+C content is 44-45%. Prevotella copri is often a widespread coloniser of gut. (Hayashi2007a; Shah2010Bergeys)



  • This organism has been recovered from human faeces (CCUG). The risk classification (www.baua.de) for this organism is 1, i.e., low risk of infection and spread. Pathogenicity status unknown, or very unlikely to be pathogenic. Is a known gut commensal.

  • GENERAL CHARACTERISTICS (Hayashi2007a); (Shah2010Bergeys);
    Character Response
  • Substrates hydrolysed or digested:
  • aesculin;
  • 💧
  • Bile tolerance:
  • Doesn't tolerate 20% bile
  • 🌡
  • Temperature tolerance:
  • Grows optimally at 37℃.
  • H+
  • Acid from carbohydrates usually produced:
  • L-arabinose; glucose; rhamnose; xylose; cellubiose; lactose; maltose; sucrose; salicin;
  • Active enzymes:
  • Ala arylamidase; alkaline phosphatase; arabinosidase; acid phosphatase; Arg arylamidase; α-galactosidase; α-glucosidase; β-glucosidase; Leu-Gly arylamidase;

  • SPECIAL FEATURES (Hayashi2007a); (Shah2010Bergeys);
    Character Response
  • Metabolites not produced:
  • indole;
  • Nitrate:
  • not reduced
  • Pigments:
  • not produced

  • RESPONSE TO ANTIBIOTICS
    Class Active Resistant
  • Penicillins:
  • amoxicillin; amoxicillin-clavulanic acid; ampicillin; azlocillin; aztreonam; bacampicillin; benzylpenicillin; cloxacillin; dicloxacillin; imipenem; meropenem; oxacillin; piperacillin; ticarcillin;
  • Cephalosporins:
  • cefazolin; cefdinir; cefepime; cefixime; cefmetazole; cefoperazone; cefotaxime; cefotetan; cefotiam; cefoxitin; ceftazidime; cefuroxime; cephalothin; moxalactam;
  • cefaclor; cefadroxil;
  • Macrolides:
  • azithromycin; clarithromycin; erythromycin; josamycin; roxithromycin; spiramycin;
  • Tetracyclines:
  • chlortetracycline; meclocycline; methacycline; minocycline; tigecycline;
  • oxytetracycline; tetracycline;
  • Quinolines:
  • ciprofloxacin; clinafloxacin; enoxacin; gatifloxacin; moxifloxacin; sarafloxacin; sparfloxacin;
  • clavulanic-acid; nalidixic-acid; norfloxacin; pefloxacin; pipemidic-acid;
  • Aminoglycosides:
  • amikacin; dihydrostreptomycin; gentamicin; kanamycin; neomycin; sisomicin; spectinomycin; streptomycin; tobramycin;
  • Polypep/ketides:
  • bacitracin; rifabutin; rifampicin; rifapentine;
  • Heterocycles:
  • fusidic-acid; metronidazole; nitrofurantoin; trimethoprim-sulfamethoxazole;
  • fosfomycin; isoniazid; sulfadiazine; sulfadimethoxine; sulfamethoxazole; sulfanilamide; trimethoprim;
  • Vancomycins:
  • teicoplanin;
  • vancomycin;
  • Miscellaneous antibiotics:
  • clindamycin; lincomycin; linezolid; colistin;

  • Prevotella species at mucosal sites to localized and systemic disease, including periodontitis, bacterial vaginosis, rheumatoid arthritis, metabolic disorders and low_grade systemic inflammation. Intriguingly, Prevotella abundance is reduced within the lung microbiota of patients with asthma and chronic obstructive pulmonary disease. Increased Prevotella abundance is associated with augmented T helper type 17 (Th17) _mediated mucosal inflammation, which is in line with the marked capacity of Prevotella in driving Th17 immune responses in vitro. Studies indicate that Prevotella predominantly activate Toll_like receptor 2, leading to production of Th17_polarizing cytokines by antigen_presenting cells, including interleukin_23 (IL_23) and IL_1. Furthermore, Prevotella stimulate epithelial cells to produce IL_8, IL_6 and CCL20, which can promote mucosal Th17 immune responses and neutrophil recruitment. Prevotella_mediated mucosal inflammation leads to systemic dissemination of inflammatory mediators, bacteria and bacterial products, which in turn may affect systemic disease outcomes. [PMID: 28542929]

  • GutFeeling KnowledgeBase COMMENTS [Website]

    Prevotella species are anaerobic Gram_negative bacteria of the Bacteroidetes phylum, which also includes the clinically important genera Bacteroides and Porphyromonas. Prevotella strains are classically considered commensal bacteria due to their extensive presence in the healthy human body and their rare involvement in infections. Only a few strains have been reported to give rise to opportunistic endogenous infections, including chronic infections, abscesses and anaerobic pneumonia. [PMID: 28542929]

  • Hayashi, H., Shibata, K., Sakamoto, M., Tomita, S., & Benno, Y. (2007). Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 57(Pt 5), 941–946.


  • Details


    GENERAL
    Lineage Physiology General Growth Tolerances Hydrol./digest./degr.
    Phylum:  Bacteroidetes Class:  Bacteroidia Order:  Bacteroidales Family:  Prevotellaceae Genus:  Prevotella Gram stain:  neg O2 Relation.:  strictly anaerobic Spore:  No spore Motility:  Sessile Morphology:  Rod Pigment:  neg
    Health:  Unknown
    Source:  human faeces (CCUG)
    DNA G+C(%):  44-45
    Opt. T:  37℃
    Bile reaction(%):  20(neg)
    Aesculin:  + Urea:  neg Gelatin:  neg

    CARBOHYDRATE ACID FORMATION
    Monosaccharide O/F Oligosaccharide O/F Polysaccharide O/F Polyol O/F Other O/F
    L-Arabinose:  + Glucose:  + Mannose:  neg Rhamnose:  + Xylose:  + Cellubiose:  + Lactose:  + Maltose:  + Melezitose:  vr Sucrose:  + Salicin:  +

    ENZYME ACTIVITY
    Enzymes: General Enzymes: Carbohydrate Enzymes: Protein Enzymes: Arylamidases Enzymes: Esters/fats
    Catalase:  neg Urease:  neg G6PDH6PGDH:  neg α-Arab:  + Ac-β-glcamnd:  neg α-Fucosidase:  neg α-Galactosidase:  + β-Galactosidase:  neg α-Glucosidase:  + β-Glucosidase:  + β-Glucuronidase:  neg α-Mannosidase:  neg ArgDH:  neg Chymotrypsin:  w GluDC:  neg Trypsin:  neg AlanineAA:  + ArgAA:  + CystineAA:  neg GluGluAA:  vr GlyAA:  neg HisAA:  neg LeuAA:  neg LeuGlyAA:  + ProAA:  neg PyrrolidAA:  neg PheAA:  neg PyrogluAA:  neg TyrAA:  neg ValAA:  neg AlkalineP:  + AcidP:  + EstLip(C8):  w Lipase:  neg

    METABOLITES - PRODUCTION & USE
    Fuel Usable Metabolites Metabolites Released Special Products Compounds Produced

    Indole:  neg Pigment:  neg

    ANTIBIOTICS ℞
    Penicillins & Penems (μg/mL) Cephalosporins (μg/mL) Aminoglycosides (μg/mL) Macrolides (μg/mL) Quinolones (μg/mL)
    amoxicillin:  S(0.06)
    Augmentin:  S(<0.016)
    ampicillin:  Sens
    azlocillin:  Sens
    aztreonam:  Sens
    bacampicillin:  Sens
    benzyl-pen:  Sens
    cloxacillin:  Sens
    dicloxacillin:  Sens
    oxacillin:  S(1)
    piperacillin:  S(0.38)
    ticarcillin:  Sens
    imipenem:  Sens
    meropenem:  S(0.094)
    cefaclor:  Res
    cefadroxil:  Res
    cefazolin:  Sens
    cefdinir:  Sens
    cefepime:  Sens
    cefixime:  Sens
    cefmetazole:  Sens
    cefoperazone:  Sens
    cefotaxime:  S(0.12)
    cefotetan:  Sens
    cefotiam:  Sens
    cefoxitin:  S(0.25)
    ceftazidime:  S(2)
    cefuroxime:  Sens
    cephalothin:  Sens
    moxalactam:  Sens
    amikacin:  R(>256)
    dihydrostrept:  Res
    gentamicin:  Res
    kanamycin:  Res
    neomycin:  Res
    sisomicin:  Res
    spectinomycin:  Res
    streptomycin:  Res
    tobramycin:  R(>1024)
    azithromycin:  S(3)
    erythromycin:  S(2)
    clarithromycin:  S(0.25)
    roxithromycin:  Sens
    spiramycin:  S(0.19)
    josamycin:  Sens
    linezolid:  S(1.5)
    ciprofloxacin:  S(4)
    clavulanate:  Res
    clinafloxacin:  Sens
    enoxacin:  Sens
    gatifloxacin:  S(0.5)
    moxifloxacin:  S(1)
    nalidixic-acid:  Res
    norfloxacin:  R(32)
    ofloxacin:  Var(MIC50): 3), MIC90: Var(3
    pefloxacin:  Res
    pipemidic_acid:  Res
    sarafloxacin:  Sens
    sparfloxacin:  Sens
    Tetracyclines (μg/mL) Vancomycin Class (μg/mL) Polypep/ketides (μg/mL) Heterocycles (μg/mL) Other (μg/mL)
    doxycycline:  Var(MIC50): 8), MIC90: Var(8
    chlortetracycline:  Sens
    meclocycline:  Sens
    methacycline:  Sens
    minocycline:  Sens
    oxytetracycline:  Res
    tetracycline:  Res
    tigecycline:  S(0.032)
    teicoplanin:  S(1)
    vancomycin:  R(32)
    bacitracin:  Sens
    rifabutin:  Sens
    rifampicin:  Sens
    rifapentine:  Sens
    chloramphenicol:  Var(MIC50): 8), MIC90: Var(8
    fosfomycin:  R(>1024)
    isoniazid:  Res
    metronidazole:  S(1)
    nitrofurantoin:  Sens
    sulfadiazine:  Res
    sulfadimethoxine:  Res
    sulfamethoxazole:  R(12)
    sulfanilamide:  Res
    trimethoprim:  R(>32)
    SXT:  S(1)
    clindamycin:  S(0.016)
    lincomycin:  Sens
    colistin:  S(12)
    fusidic-acid:  Sens

    References


    SPECIFIC REFERENCES FOR PREVOTELLA COPRI
  • Hayashi2007a - Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces.
  • Shah2010Bergeys - Bergey's manual of systematic bacteriology. Vol. 4, The Bacteroidetes. Family Prevotellaceae, Genus I. Prevotella
  • Petrov2017 - Analysis of Gut Microbiota in Patients with Parkinson's Disease.
  • Feng2015 - Gut microbiome development along the colorectal adenoma-carcinoma sequence
  • Gao2020 - Functional Microbiomics Reveals Alterations of the Gut Microbiome and Host Co-Metabolism in Patients With Alcoholic Hepatitis
  • AlpizarRodriguez2019 - Prevotella copri in individuals at risk for rheumatoid arthritis
  • Bajer2017 - Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis
  • Bedarf2017 - Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson's disease patients
  • Bhute2017 - Gut Microbial Diversity Assessment of Indian Type-2-Diabetics Reveals Alterations in Eubacteria, Archaea, and Eukaryotes
  • Cree2016 - Gut microbiome analysis in neuromyelitis optica reveals overabundance of Clostridium perfringens
  • DeAngelis2013 - Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified
  • Debyser2016 - Faecal proteomics: A tool to investigate dysbiosis and inflammation in patients with cystic fibrosis
  • Dong2020 - A Microbial Signature Identifies Advanced Fibrosis in Patients with Chronic Liver Disease Mainly Due to NAFLD
  • Houttu2018 - Overweight and obesity status in pregnant women are related to intestinal microbiota and serum metabolic and inflammatory profiles
  • Huang2019 - Analysis of microbiota in elderly patients with Acute Cerebral Infarction
  • Jackson2016 - Signatures of early frailty in the gut microbiota
  • Jie2017 - The gut microbiome in atherosclerotic cardiovascular disease
  • Li2019c - Gut Microbiota Differs Between Parkinson's Disease Patients and Healthy Controls in Northeast China
  • Liu2019a - The intestinal microbiota associated with cardiac valve calcification differs from that of coronary artery disease
  • Lozupone2013 - Alterations in the gut microbiota associated with HIV-1 infection
  • Minerbi2019 - Altered microbiome composition in individuals with fibromyalgia
  • Miyake2015 - Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters
  • Scher2013 - Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis
  • Shapiro2019 - Psoriatic patients have a distinct structural and functional fecal microbiota compared with controls
  • Shi2019 - Alterations in the intestinal microbiota of patients with severe and active Graves' orbitopathy: a cross-sectional study
  • Urban2020 - Altered Fecal Microbiome Years after Traumatic Brain Injury
  • Wang2019b - Alterations in the human gut microbiome associated with Helicobacter pylori infection
  • Wang2020a - Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents
  • Weir2013 - Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults
  • Ying2020 - Gut microbiota and Chinese medicine syndrome: altered fecal microbiotas in spleen (Pi)-deficient patients
  • Laue2020 - Prospective associations of the infant gut microbiome and microbial function with social behaviors related to autism at age 3 years
  • Cani2018 - Human gut microbiome: hopes, threats and promises.
  • ...............................
  • GUT MICROBIOME COMPILATIONS AND METASTUDIES FOR PREVOTELLA COPRI
  • Browne2016 - Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation.
  • Byrd2020 - Stability and dynamics of the human gut microbiome and its association with systemic immune traits.
  • Chen2020 - Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine
  • Chen2020a - Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease
  • De2020 - Metagenomic analysis of gut microbiome and resistome of diarrheal fecal samples from Kolkata, India, reveals the core and variable microbiota including signatures of microbial dark matter.
  • Dubinkina2017 - Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease
  • Forster2019 - A human gut bacterial genome and culture collection for improved metagenomic analyses.
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Jie2017 - The gut microbiome in atherosclerotic cardiovascular disease
  • Karlsson2013 - Gut metagenome in European women with normal, impaired and diabetic glucose control
  • Lagier2016 - Culture of previously uncultured members of the human gut microbiota by culturomics.
  • Li2019b - Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus
  • McLaughlin2010 - The bacteriology of pouchitis: a molecular phylogenetic analysis using 16S rRNA gene cloning and sequencing.
  • Minerbi2019 - Altered microbiome composition in individuals with fibromyalgia
  • New2022 - Collective effects of human genomic variation on microbiome function.
  • Nielsen2014 - MetaHIT Consortium. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.
  • PerezBrocal2015 - Metagenomic Analysis of Crohn's Disease Patients Identifies Changes in the Virome and Microbiome Related to Disease Status and Therapy, and Detects Potential Interactions and Biomarkers
  • RajilicStojanovic2014 - The first 1000 cultured species of the human gastrointestinal microbiota.
  • Rothschild2018 - Environment dominates over host genetics in shaping human gut microbiota.
  • Tyakht2013 - Human gut microbiota community structures in urban and rural populations in Russia.
  • Urban2020 - Altered Fecal Microbiome Years after Traumatic Brain Injury
  • Walker2011 - High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease.
  • Wang2018 - A metagenome-wide association study of gut microbiota in asthma in UK adults
  • Wang2018a - Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model.
  • Wang2020a - Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents
  • Yang2020 - Species-Level Analysis of Human Gut Microbiota With Metataxonomics.
  • Yang2020a - Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families
  • Zeller2014 - Potential of fecal microbiota for early-stage detection of colorectal cancer
  • Zou2019 - 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses.
  • Zupancic2012 - Analysis of the Gut Microbiota in the Old Order Amish and Its Relation to the Metabolic Syndrome.
  • ...............................
  • GENERAL REFERENCES FOR PREVOTELLA COPRI
  • CCUG - Culture Collection University of Gothenburg - Entire Collection