General | Carbohydrate O/F | Substrate utilisation | Enzymes | Metabolites | Antibiotics

Overview


  • Roseburia hominis is a Gram-variable, strictly anaerobic, motile, rod-shaped - curved bacterium. It has been detected in at least 25 gut microbiome compilation studies or metastudies. The DNA G+C content is 47.4%. Roseburia hominis is often a widespread coloniser of gut. (Duncan2006)



  • This organism has been recovered from human faeces. The risk classification (www.baua.de) for this organism is 1, i.e., low risk of infection and spread. Pathogenicity status unknown, or very unlikely to be pathogenic. Is a known gut commensal. Robust growth can have positive consequences for gut health.

  • GENERAL CHARACTERISTICS (Duncan2006);
    Character Response
  • 🌡
  • Temperature tolerance:
  • Grows optimally at 37℃.
  • Substrates assimilated or utilised:
  • arabinose; cellubiose; fructose; glucose; glycerol; maltose; xylose; acetate;
  • ±
  • Strain-dependent substrate utilisation:
  • raffinose;
  • Active enzymes:
  • α-galactosidase; β-galactosidase;
  • ±
  • Strain-dependent active enzymes:
  • β-glucosidase;

  • SPECIAL FEATURES (Duncan2006);
    Character Response
  • Metabolites produced:
  • formate; butyrate (major); lactate;
  • Metabolites not produced:
  • indole;
  • Nitrate:
  • not reduced

  • RESPONSE TO ANTIBIOTICS
    Class Active Resistant
  • Penicillins:
  • amoxicillin; ampicillin; azlocillin; bacampicillin; benzylpenicillin; cloxacillin; dicloxacillin; imipenem; meropenem; oxacillin; piperacillin; ticarcillin;
  • aztreonam;
  • Cephalosporins:
  • cefaclor; cefadroxil; cefazolin; cefdinir; cefepime; cefixime; cefmetazole; cefoperazone; cefotaxime; cefotetan; cefotiam; cefoxitin; ceftazidime; cefuroxime; cephalothin; moxalactam;
  • Macrolides:
  • azithromycin; clarithromycin; erythromycin; josamycin; roxithromycin; spiramycin;
  • Tetracyclines:
  • chlortetracycline; doxycycline; meclocycline; methacycline; minocycline; oxytetracycline; tetracycline;
  • Quinolines:
  • ciprofloxacin; clinafloxacin; gatifloxacin; moxifloxacin;
  • clavulanic-acid; enoxacin; nalidixic-acid; norfloxacin; ofloxacin; pefloxacin; pipemidic-acid; sarafloxacin; sparfloxacin;
  • Aminoglycosides:
  • amikacin; dihydrostreptomycin; gentamicin; kanamycin; neomycin; sisomicin; spectinomycin; streptomycin; tobramycin;
  • Polypep/ketides:
  • bacitracin; rifabutin; rifampicin; rifapentine;
  • Heterocycles:
  • chloramphenicol; fusidic-acid; metronidazole; nitrofurantoin;
  • isoniazid; sulfadiazine; sulfadimethoxine; sulfamethoxazole; sulfanilamide; trimethoprim;
  • Vancomycins:
  • vancomycin;
  • Miscellaneous antibiotics:
  • clindamycin; lincomycin; linezolid; colistin;

  • NOTES

    This is a common and important member of the human gut microbiome.

    Fuel sources used:
    It can use soluble fibre, simple sugars and acetate as energy sources.

    Metabolites produced:
    Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, B-glucuronidase, BCAAs, butyrate, lactate, cobalamin, folate, biotin, riboflavin.

    Metabolites consumed:
    In addition, our genomic analysis indicates that most members of this species do not consume any reported metabolites.

    Emerging research:
    Studies suggest this bacterial species can help regulate the immune system and reduce inflammation. One study found higher levels in active women compared to sedentary women. Reduced levels of this bacterium have also been observed in patients with ulcerative colitis and hypertension.

  • References: [1] [2] [3] [4] [5] [6]

  • This organism utilizes arabinose, fructose, glucose, maltose, cellobiose, xylose and glycerol as energy sources for growth. Butyrate and formate are major products and lactate a minor product from glucose (0.2 %), with net consumption of acetate present in the medium. R.hominis is involved in the maintenance of normal gut health. Adapted from PMID: 17012576). [UP000008178]

  • GutFeeling KnowledgeBase COMMENTS [Website]

    Roseburia hominis (strain DSM 16839 / NCIMB 14029 / A2-183) is a strictly anaerobic, chemoorganotrophic is Gram-positive bacterium isolated from human faecal samples. Cells are slightly curved rods (0.5-1.5 mm), and motile by means of multiple flagella. The optimum growth temperature is 37 degrees Celsius. It utilizes arabinose, fructose, glucose, maltose, cellobiose, xylose and glycerol as energy sources for growth. Butyrate and formate are major products and lactate a minor product from glucose (0.2 %), with net consumption of acetate present in the medium. R.hominis is involved in the maintenance of normal gut health. Adapted from PMID: 17012576). [UP000008178]

  • Duncan, S. H., Aminov, R. I., Scott, K. P., Louis, P., Stanton, T. B., & Flint, H. J. (2006). Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces. International Journal of Systematic and Evolutionary Microbiology, 56(Pt 10), 2437–2441.


  • Details


    GENERAL
    Lineage Physiology General Growth Tolerances Hydrol./digest./degr.
    Phylum:  Firmicutes Class:  Clostridia Order:  Eubacteriales Family:  Lachnospiraceae Genus:  Roseburia Gram stain:  vr O2 Relation.:  strictly anaerobic Motility:  Swimming Morphology:  Rod - curved
    Health:   Positive
    Source:  human faeces
    DNA G+C(%):  47.4
    Opt. T:  37℃
    Urea:  neg

    CARBOHYDRATE ACID FORMATION
    Monosaccharide O/F Oligosaccharide O/F Polysaccharide O/F Polyol O/F Other O/F
    Mannose:  neg

    SUBSTRATE ASSIMILATION & UTILISATION
    Monosaccharide util/assim Oligosaccharide util/assim Other carboh. util/assim Amino acid util/assim Organic acid util/assim
    Arabinose:  + Fructose:  + Glucose:  + Xylose:  + Cellubiose:  + Maltose:  + Melibiose:  w Raffinose:  w(d) Sucrose:  neg Glycerol:  + Inulin:  neg Sorbitol:  neg Starch:  neg Xylan:  neg Acetate:  +

    ENZYME ACTIVITY
    Enzymes: General Enzymes: Carbohydrate Enzymes: Protein Enzymes: Arylamidases Enzymes: Esters/fats
    Catalase:  neg Urease:  neg Ac-β-glcamnd:  neg α-Fucosidase:  neg α-Galactosidase:  + β-Galactosidase:  + α-Glucosidase:  neg β-Glucosidase:  d β-Glucuronidase:  neg ArgDH:  neg GluDC:  neg AlanineAA:  neg GluGluAA:  neg GlyAA:  neg LeuAA:  neg LeuGlyAA:  neg PyrrolidAA:  neg AlkalineP:  neg

    METABOLITES - PRODUCTION & USE
    Fuel Usable Metabolites Metabolites Released Special Products Compounds Produced

    Formate:  + Butyrate:  Major(+) Lactate:  + Indole:  neg

    ANTIBIOTICS ℞
    Penicillins & Penems (μg/mL) Cephalosporins (μg/mL) Aminoglycosides (μg/mL) Macrolides (μg/mL) Quinolones (μg/mL)
    amoxicillin:  Sens
    ampicillin:  Sens
    azlocillin:  Sens
    aztreonam:  Res
    bacampicillin:  Sens
    benzyl-pen:  Sens
    cloxacillin:  Sens
    dicloxacillin:  Sens
    oxacillin:  Sens
    piperacillin:  Sens
    ticarcillin:  Sens
    imipenem:  Sens
    meropenem:  Sens
    cefaclor:  Sens
    cefadroxil:  Sens
    cefazolin:  Sens
    cefdinir:  Sens
    cefepime:  Sens
    cefixime:  Sens
    cefmetazole:  Sens
    cefoperazone:  Sens
    cefotaxime:  Sens
    cefotetan:  Sens
    cefotiam:  Sens
    cefoxitin:  Sens
    ceftazidime:  Sens
    cefuroxime:  Sens
    cephalothin:  Sens
    moxalactam:  Sens
    amikacin:  Res
    dihydrostrept:  Res
    gentamicin:  Res
    kanamycin:  Res
    neomycin:  Res
    sisomicin:  Res
    spectinomycin:  Res
    streptomycin:  Res
    tobramycin:  Res
    azithromycin:  Sens
    erythromycin:  Sens
    clarithromycin:  Sens
    roxithromycin:  Sens
    spiramycin:  Sens
    josamycin:  Sens
    linezolid:  Sens
    ciprofloxacin:  Sens
    clavulanate:  Res
    clinafloxacin:  Sens
    enoxacin:  Res
    gatifloxacin:  Sens
    moxifloxacin:  Sens
    nalidixic-acid:  Res
    norfloxacin:  Res
    ofloxacin:  Res
    pefloxacin:  Res
    pipemidic_acid:  Res
    sarafloxacin:  Res
    sparfloxacin:  Res
    Tetracyclines (μg/mL) Vancomycin Class (μg/mL) Polypep/ketides (μg/mL) Heterocycles (μg/mL) Other (μg/mL)
    doxycycline:  Sens
    chlortetracycline:  Sens
    meclocycline:  Sens
    methacycline:  Sens
    minocycline:  Sens
    oxytetracycline:  Sens
    tetracycline:  Sens
    vancomycin:  Sens
    bacitracin:  Sens
    rifabutin:  Sens
    rifampicin:  Sens
    rifapentine:  Sens
    chloramphenicol:  Sens
    isoniazid:  Res
    metronidazole:  Sens
    nitrofurantoin:  Sens
    sulfadiazine:  Res
    sulfadimethoxine:  Res
    sulfamethoxazole:  Res
    sulfanilamide:  Res
    trimethoprim:  Res
    clindamycin:  Sens
    lincomycin:  Sens
    colistin:  Sens
    fusidic-acid:  Sens

    References


    SPECIFIC REFERENCES FOR ROSEBURIA HOMINIS
  • Duncan2006 - Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces.
  • Borgo2017 - Microbiota in anorexia nervosa: The triangle between bacterial species, metabolites and psychological tests
  • Borren2020 - Alterations in Fecal Microbiomes and Serum Metabolomes of Fatigued Patients With Quiescent Inflammatory Bowel Diseases
  • Chua2018 - Intestinal Dysbiosis Featuring Abundance of Ruminococcus gnavus Associates With Allergic Diseases in Infants
  • DeAngelis2013 - Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified
  • Gryp2020 - Isolation and Quantification of Uremic Toxin Precursor-Generating Gut Bacteria in Chronic Kidney Disease Patients
  • Hayden2020 - Fecal dysbiosis in infants with cystic fibrosis is associated with early linear growth failure
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Kinumaki2015 - Characterization of the gut microbiota of Kawasaki disease patients by metagenomic analysis
  • Machiels2014 - A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis
  • Qin2014 - Alterations of the human gut microbiome in liver cirrhosis
  • Vatanen2018 - The human gut microbiome in early-onset type 1 diabetes from the TEDDY study
  • Wan2019 - Alterations of the Gut Microbiota in Multiple System Atrophy Patients
  • Zhong2019 - Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics
  • ...............................
  • GUT MICROBIOME COMPILATIONS AND METASTUDIES FOR ROSEBURIA HOMINIS
  • Browne2016 - Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation.
  • Byrd2020 - Stability and dynamics of the human gut microbiome and its association with systemic immune traits.
  • Chen2020 - Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine
  • Chen2020a - Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease
  • De2020 - Metagenomic analysis of gut microbiome and resistome of diarrheal fecal samples from Kolkata, India, reveals the core and variable microbiota including signatures of microbial dark matter.
  • Dubinkina2017 - Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Jeong2021 - The effect of taxonomic classification by full-length 16S rRNA sequencing with a synthetic long-read technology
  • Jie2017 - The gut microbiome in atherosclerotic cardiovascular disease
  • King2019 - Baseline human gut microbiota profile in healthy people and standard reporting template.
  • Lagier2016 - Culture of previously uncultured members of the human gut microbiota by culturomics.
  • Minerbi2019 - Altered microbiome composition in individuals with fibromyalgia
  • New2022 - Collective effects of human genomic variation on microbiome function.
  • Nielsen2014 - MetaHIT Consortium. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.
  • PerisBondia2011 - The active human gut microbiota differs from the total microbiota.
  • Qin2012 - Metagenome-wide association study of gut microbiota in type 2 diabetes
  • RajilicStojanovic2014 - The first 1000 cultured species of the human gastrointestinal microbiota.
  • Rothschild2018 - Environment dominates over host genetics in shaping human gut microbiota.
  • Tyakht2013 - Human gut microbiota community structures in urban and rural populations in Russia.
  • Walker2011 - High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease.
  • Wang2018 - A metagenome-wide association study of gut microbiota in asthma in UK adults
  • Wang2018a - Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model.
  • Wang2020a - Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents
  • Yang2020 - Species-Level Analysis of Human Gut Microbiota With Metataxonomics.
  • Yang2020a - Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families
  • Zeller2014 - Potential of fecal microbiota for early-stage detection of colorectal cancer
  • Zou2019 - 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses.
  • ...............................
  • GENERAL REFERENCES FOR ROSEBURIA HOMINIS
  • Ludwig2009 - Revised road map to the phylum Firmicutes.