General | Carbohydrate O/F | Substrate utilisation | Enzymes | Metabolites | Antibiotics

Overview


  • Ruminococcus bromii is a Gram-positive, non-spore-forming, strictly anaerobic, non-motile, coccus bacterium. It has been detected in at least 37 gut microbiome compilation studies or metastudies. The DNA G+C content is 39–40%. Ruminococcus bromii is often a widespread coloniser of gut. (Moore1972; Togo2018; Ezaki2011aBergey)



  • This organism has been recovered from human faeces. The risk classification (www.baua.de) for this organism is 1, i.e., low risk of infection and spread. Pathogenicity status unknown, or very unlikely to be pathogenic. Is a known gut commensal. Robust growth can have positive consequences for gut health.

  • GENERAL CHARACTERISTICS (Moore1972); (Togo2018); (Ezaki2011aBergey);
    Character Response
  • Substrates hydrolysed or digested:
  • starch;
  • H+
  • Acid from carbohydrates usually produced:
  • fructose; galactose; glycogen; starch; maltose;
  • ±
  • Strain-dependent acid from carbs:
  • mannose; melibiose;
  • Substrates assimilated or utilised:
  • fructose; galactose; maltose; mannose; starch;

  • SPECIAL FEATURES (Moore1972); (Togo2018); (Ezaki2011aBergey);
    Character Response
  • Metabolites produced:
  • formate (minor); acetate; propionate (minor); butyrate; lactate (minor); ethanol;
  • Metabolites not produced:
  • indole;
  • Nitrate:
  • not reduced

  • RESPONSE TO ANTIBIOTICS
    Class Active Resistant
  • Penicillins:
  • amoxicillin; ampicillin; azlocillin; bacampicillin; benzylpenicillin; cloxacillin; dicloxacillin; imipenem; meropenem; oxacillin; piperacillin; ticarcillin;
  • aztreonam;
  • Cephalosporins:
  • cefaclor; cefazolin; cefdinir; cefepime; cefixime; cefmetazole; cefoperazone; cefotaxime; cefotetan; cefotiam; cefoxitin; ceftazidime; cefuroxime; cephalothin; moxalactam;
  • cefadroxil;
  • Macrolides:
  • azithromycin; clarithromycin; erythromycin; josamycin; roxithromycin; spiramycin;
  • Tetracyclines:
  • chlortetracycline; doxycycline; meclocycline; methacycline; minocycline; oxytetracycline; tetracycline;
  • Quinolines:
  • ciprofloxacin; clavulanic-acid; clinafloxacin; gatifloxacin; moxifloxacin; sarafloxacin;
  • enoxacin; nalidixic-acid; norfloxacin; ofloxacin; pefloxacin; pipemidic-acid; sparfloxacin;
  • Aminoglycosides:
  • amikacin; tobramycin;
  • dihydrostreptomycin; gentamicin; kanamycin; neomycin; sisomicin; spectinomycin; streptomycin;
  • Polypep/ketides:
  • bacitracin; rifabutin; rifampicin; rifapentine;
  • Heterocycles:
  • chloramphenicol; fusidic-acid; metronidazole; nitrofurantoin;
  • isoniazid; sulfadiazine; sulfadimethoxine; sulfamethoxazole; sulfanilamide; trimethoprim;
  • Vancomycins:
  • vancomycin;
  • Miscellaneous antibiotics:
  • clindamycin; lincomycin; linezolid;
  • colistin;

  • N/A

  • Non-digestible carbohydrates generally provide the main sources of energy for the microbial communities that inhabit the human large intestine. These include plant cell wall polysaccharides such as cellulose, xylan and pectin that comprise plant fiber, but on most diets the largest contribution is thought to come from the fraction of dietary starch that survives digestion in the upper gastrointestinal tract (resistant starch, RS). This work also indicates that R. bromii possesses an exceptional ability to colonize and degrade starch particles when compared with previously studied amylolytic bacteria from the human colon. [PMID: 22343308]

  • GutFeeling KnowledgeBase COMMENTS [Website]

    Ruminococcaceae are an important family of Firmicutes bacteria within the colonic microbial communities which have evolved specialized systems to utilize complex carbohydrates. R. bromii is one of the most abundant bacteria constituting the human colonic microbiota and a primary degrader of starch resistant (RS), an important non-digestible dietary polysaccharide. [PMID: 30455672]

  • Moore, W. E. C., Cato, E. P., & Holdeman, L. V. (1972). Ruminococcus bromii sp. n. and Emendation of the Description of Ruminococcus Sijpestein. International Journal of Systematic Bacteriology, 22(2), 78–80.


  • Details


    GENERAL
    Lineage Physiology General Growth Tolerances Hydrol./digest./degr.
    Phylum:  Firmicutes Class:  Clostridia Order:  Eubacteriales Family:  Oscillospiraceae Genus:  Ruminococcus Gram stain:  + O2 Relation.:  strictly anaerobic Spore:  No spore Motility:  Sessile Morphology:  Coccus
    Health:   Positive
    Source:  human faeces
    DNA G+C(%):  39–40
    Aesculin:  neg Gelatin:  neg Starch:  + Milk:  neg Meat:  neg

    CARBOHYDRATE ACID FORMATION
    Monosaccharide O/F Oligosaccharide O/F Polysaccharide O/F Polyol O/F Other O/F
    Arabinose:  neg Fructose:  d(+) Fucose:  neg Galactose:  d(+) Glucose:  w Mannose:  d(w) Rhamnose:  neg Ribose:  neg Sorbose:  neg Xylose:  neg Cellubiose:  neg Lactose:  neg Maltose:  + Melezitose:  neg Melibiose:  d(neg) Sucrose:  neg Trehalose:  neg Amygdalin:  neg Aesculin:  neg Glycogen:  d(+) Inulin:  neg Starch:  d(+) Pectin:  neg Xylan:  neg Adonitol:  neg Dulcitol:  neg Erythritol:  neg Glycerol:  neg Inositol:  neg Mannitol:  neg Sorbitol:  neg Salicin:  neg

    SUBSTRATE ASSIMILATION & UTILISATION
    Monosaccharide util/assim Oligosaccharide util/assim Other carboh. util/assim Amino acid util/assim Organic acid util/assim
    Arabinose:  neg Fructose:  + Galactose:  + Glucose:  neg Mannose:  w(+) Xylose:  neg Cellubiose:  neg Lactose:  neg Maltose:  + Raffinose:  neg Sucrose:  neg Cellulose:  neg Aesculin:  neg Glycogen:  neg Mannitol:  neg Pectin:  neg Salicin:  neg Starch:  + Xylan:  neg

    ENZYME ACTIVITY
    Enzymes: General Enzymes: Carbohydrate Enzymes: Protein Enzymes: Arylamidases Enzymes: Esters/fats
    Catalase:  neg Lecithinase:  neg Lipase:  neg

    METABOLITES - PRODUCTION & USE
    Fuel Usable Metabolites Metabolites Released Special Products Compounds Produced

    Formate:  minor(+) Acetate:  + Propionate:  minor(+) Butyrate:  + Lactate:  minor(+) Ethanol:  + Indole:  neg

    ANTIBIOTICS ℞
    Penicillins & Penems (μg/mL) Cephalosporins (μg/mL) Aminoglycosides (μg/mL) Macrolides (μg/mL) Quinolones (μg/mL)
    amoxicillin:  Sens
    ampicillin:  Sens
    azlocillin:  Sens
    aztreonam:  Res
    bacampicillin:  Sens
    benzyl-pen:  Sens
    cloxacillin:  Sens
    dicloxacillin:  Sens
    oxacillin:  Sens
    piperacillin:  Sens
    ticarcillin:  Sens
    imipenem:  Sens
    meropenem:  Sens
    cefaclor:  Sens
    cefadroxil:  Res
    cefazolin:  Sens
    cefdinir:  Sens
    cefepime:  Sens
    cefixime:  Sens
    cefmetazole:  Sens
    cefoperazone:  Sens
    cefotaxime:  Sens
    cefotetan:  Sens
    cefotiam:  Sens
    cefoxitin:  Sens
    ceftazidime:  Sens
    cefuroxime:  Sens
    cephalothin:  Sens
    moxalactam:  Sens
    amikacin:  Sens
    dihydrostrept:  Res
    gentamicin:  Res
    kanamycin:  Res
    neomycin:  Res
    sisomicin:  Res
    spectinomycin:  Res
    streptomycin:  Res
    tobramycin:  Sens
    azithromycin:  Sens
    erythromycin:  Sens
    clarithromycin:  Sens
    roxithromycin:  Sens
    spiramycin:  Sens
    josamycin:  Sens
    linezolid:  Sens
    ciprofloxacin:  Sens
    clavulanate:  Sens
    clinafloxacin:  Sens
    enoxacin:  Res
    gatifloxacin:  Sens
    moxifloxacin:  Sens
    nalidixic-acid:  Res
    norfloxacin:  Res
    ofloxacin:  Res
    pefloxacin:  Res
    pipemidic_acid:  Res
    sarafloxacin:  Sens
    sparfloxacin:  Res
    Tetracyclines (μg/mL) Vancomycin Class (μg/mL) Polypep/ketides (μg/mL) Heterocycles (μg/mL) Other (μg/mL)
    doxycycline:  Sens
    chlortetracycline:  Sens
    meclocycline:  Sens
    methacycline:  Sens
    minocycline:  Sens
    oxytetracycline:  Sens
    tetracycline:  Sens
    vancomycin:  Sens
    bacitracin:  Sens
    rifabutin:  Sens
    rifampicin:  Sens
    rifapentine:  Sens
    chloramphenicol:  Sens
    isoniazid:  Res
    metronidazole:  Sens
    nitrofurantoin:  Sens
    sulfadiazine:  Res
    sulfadimethoxine:  Res
    sulfamethoxazole:  Res
    sulfanilamide:  Res
    trimethoprim:  Res
    clindamycin:  Sens
    lincomycin:  Sens
    colistin:  Res
    fusidic-acid:  Sens

    References


    SPECIFIC REFERENCES FOR RUMINOCOCCUS BROMII
  • Moore1972 - Ruminococcus bromii sp. n. and Emendation of the Description of Ruminococcus Sijpestein.
  • Togo2018 - Description of Mediterraneibacter massiliensis, gen. nov., sp. nov., a new genus isolated from the gut microbiota of an obese patient and reclassification of Ruminococcus faecis, Ruminococcus lactaris, Ruminococcus torques, Ruminococcus gnavus and Clostridium glycyrrhizinilyticum as Mediterraneibacter faecis comb. nov., Mediterraneibacter lactaris comb. nov., Mediterraneibacter torques comb. nov., Mediterraneibacter gnavus comb. nov. and Mediterraneibacter glycyrrhizinilyticus comb. nov.
  • Ezaki2011aBergey - Bergey's manual of systematic bacteriology. Vol. 3, The Firmicutes. Family Ruminococcaceae, Genus I. Ruminococcus
  • Petrov2017 - Analysis of Gut Microbiota in Patients with Parkinson's Disease.
  • Salyers1977 - Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon
  • Gao2020 - Functional Microbiomics Reveals Alterations of the Gut Microbiome and Host Co-Metabolism in Patients With Alcoholic Hepatitis
  • Borren2020 - Alterations in Fecal Microbiomes and Serum Metabolomes of Fatigued Patients With Quiescent Inflammatory Bowel Diseases
  • Candela2012 - Unbalance of intestinal microbiota in atopic children
  • Debyser2016 - Faecal proteomics: A tool to investigate dysbiosis and inflammation in patients with cystic fibrosis
  • Dong2020a - The Association of Gut Microbiota With Idiopathic Central Precocious Puberty in Girls
  • Giongo2011 - Toward defining the autoimmune microbiome for type 1 diabetes
  • Hoffman2014 - Escherichia coli dysbiosis correlates with gastrointestinal dysfunction in children with cystic fibrosis
  • Huang2019 - Analysis of microbiota in elderly patients with Acute Cerebral Infarction
  • Jackson2016 - Signatures of early frailty in the gut microbiota
  • Jandhyala2017 - Altered intestinal microbiota in patients with chronic pancreatitis: implications in diabetes and metabolic abnormalities
  • Kang2010 - Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray
  • KowalskaDuplaga2019 - Differences in the intestinal microbiome of healthy children and patients with newly diagnosed Crohn's disease
  • Lv2016 - Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis
  • Malham2019 - The microbiome reflects diagnosis and predicts disease severity in paediatric onset inflammatory bowel disease
  • Monaco2016 - Altered Virome and Bacterial Microbiome in Human Immunodeficiency Virus-Associated Acquired Immunodeficiency Syndrome
  • Nishino2018 - Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease
  • Nylund2013 - Microarray analysis reveals marked intestinal microbiota aberrancy in infants having eczema compared to healthy children in at-risk for atopic disease
  • PerezBrocal2015 - Metagenomic Analysis of Crohn's Disease Patients Identifies Changes in the Virome and Microbiome Related to Disease Status and Therapy, and Detects Potential Interactions and Biomarkers
  • Sokol2017 - Fungal microbiota dysbiosis in IBD
  • Zheng2020a - Specific gut microbiome signature predicts the early-stage lung cancer
  • Zhou2018 - Alterations in the gut microbiota of patients with acquired immune deficiency syndrome
  • Mondot2011 - Highlighting new phylogenetic specificities of Crohn's disease microbiota.
  • ...............................
  • GUT MICROBIOME COMPILATIONS AND METASTUDIES FOR RUMINOCOCCUS BROMII
  • Benno1986 - Comparison of the fecal microflora in rural Japanese and urban Canadians.
  • Benno1989 - Comparison of fecal microflora of elderly persons in rural and urban areas of Japan.
  • Browne2016 - Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation.
  • Byrd2020 - Stability and dynamics of the human gut microbiome and its association with systemic immune traits.
  • Chen2020 - Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine
  • Chen2020a - Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease
  • Chung2019 - Impact of carbohydrate substrate complexity on the diversity of the human colonic microbiota.
  • De2020 - Metagenomic analysis of gut microbiome and resistome of diarrheal fecal samples from Kolkata, India, reveals the core and variable microbiota including signatures of microbial dark matter.
  • Dubinkina2017 - Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease
  • Finegold1974 - Effect of diet on human fecal flora: comparison of Japanese and American diets
  • Finegold1977 - Fecal microbial flora in Seventh Day Adventist populations and control subjects.
  • Forster2019 - A human gut bacterial genome and culture collection for improved metagenomic analyses.
  • Holdeman1976 - Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress.
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Jie2017 - The gut microbiome in atherosclerotic cardiovascular disease
  • Karlsson2013 - Gut metagenome in European women with normal, impaired and diabetic glucose control
  • Lagier2016 - Culture of previously uncultured members of the human gut microbiota by culturomics.
  • LeChatelier2013 - Richness of human gut microbiome correlates with metabolic markers
  • Li2019b - Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus
  • Mangin2004 - Molecular inventory of faecal microflora in patients with Crohn's disease.
  • Minerbi2019 - Altered microbiome composition in individuals with fibromyalgia
  • Moore1995 - Intestinal floras of populations that have a high risk of colon cancer
  • PerezBrocal2015 - Metagenomic Analysis of Crohn's Disease Patients Identifies Changes in the Virome and Microbiome Related to Disease Status and Therapy, and Detects Potential Interactions and Biomarkers
  • PerisBondia2011 - The active human gut microbiota differs from the total microbiota.
  • Qin2012 - Metagenome-wide association study of gut microbiota in type 2 diabetes
  • RajilicStojanovic2014 - The first 1000 cultured species of the human gastrointestinal microbiota.
  • Rothschild2018 - Environment dominates over host genetics in shaping human gut microbiota.
  • Salonen2014 - Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men.
  • Tyakht2013 - Human gut microbiota community structures in urban and rural populations in Russia.
  • Urban2020 - Altered Fecal Microbiome Years after Traumatic Brain Injury
  • Walker2011 - High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease.
  • Wang2018 - A metagenome-wide association study of gut microbiota in asthma in UK adults
  • Wang2018a - Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model.
  • Wang2020a - Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents
  • Yang2020 - Species-Level Analysis of Human Gut Microbiota With Metataxonomics.
  • Yang2020a - Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families
  • Zeller2014 - Potential of fecal microbiota for early-stage detection of colorectal cancer
  • Zou2019 - 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses.
  • Zupancic2012 - Analysis of the Gut Microbiota in the Old Order Amish and Its Relation to the Metabolic Syndrome.
  • ...............................
  • GENERAL REFERENCES FOR RUMINOCOCCUS BROMII
  • Ludwig2009 - Revised road map to the phylum Firmicutes.