General | Carbohydrate O/F | Substrate utilisation | Enzymes | Metabolites | Antibiotics

Overview


  • Ruminococcus flavefaciens is a Gram-positive, non-spore-forming, strictly anaerobic, non-motile, coccus bacterium. It has been detected in at least 15 gut microbiome compilation studies or metastudies. The DNA G+C content is 39–44%. Ruminococcus flavefaciens is a common gut coloniser. (Togo2018; Ezaki2011aBergey; Hungate1957)



  • This organism has been recovered from human faeces (Ludwig2009), and rumen. The risk classification (www.baua.de) for this organism is 1, i.e., low risk of infection and spread. Pathogenicity status unknown, or very unlikely to be pathogenic. Is a known gut commensal.

  • GENERAL CHARACTERISTICS (Togo2018); (Ezaki2011aBergey); (Hungate1957);
    Character Response
  • 🌡
  • Temperature tolerance:
  • grows at 37-40℃; grows at 41-42℃; Grows optimally at 37–42℃.
  • H+
  • Acid from carbohydrates usually produced:
  • cellulose; xylan; cellubiose; lactose;
  • ±
  • Strain-dependent acid from carbs:
  • glucose; aesculin;
  • Substrates assimilated or utilised:
  • cellubiose; lactose;
  • Active enzymes:
  • arginine dihydrolase; glutamic acid decarboxylase;
  • ±
  • Strain-dependent active enzymes:
  • β-glucosidase;

  • SPECIAL FEATURES (Togo2018); (Ezaki2011aBergey); (Hungate1957);
    Character Response
  • Metabolites produced:
  • formate; acetate; lactate; ethanol; succinate; H₂;
  • Metabolites not produced:
  • indole;
  • Nitrate:
  • not reduced

  • RESPONSE TO ANTIBIOTICS
    Class Active Resistant
  • Quinolines:
  • ciprofloxacin;

  • All ruminococci require fermentable carbohydrates for growth, and their substrate preferences appear to be based on the diet of their particular host. Most ruminococci that have been studied are those capable of degrading cellulose, much less is known about non-cellulolytic non-ruminant-associated species, and even less is known about the environmental distribution of ruminococci as a whole. [PMID: 28348838]

  • GutFeeling KnowledgeBase COMMENTS [Website]

    Ruminococcus species are defined as strictly anaerobic, Gram-positive, non-motile cocci that do not produce endospores and require fermentable carbohydrates for growth (Rainey, 2009b). They were initially described from the isolation of Ruminococcus flavefaciens from the bovine rumen (Sijpesteijn, 1948). Ruminococcus is currently considered a polyphyletic genus, with species members belonging to two separate families: the Ruminococcaceae and the Lachnospiraceae (Rainey & Janssen, 1995). Ruminococcus species are predominantly associated with herbivores and omnivores, relative to carnivores, and that significantly abundant Ruminococcus populations are absent in non-host-associated environments. [PMID: 28348838]

  • Finegold, S. M., Howard, R. A., & Vera, L. S. (1974). Effect of diet on human intestinal fecal flora: comparison of Japanese and American diets. Am. J. Clin. Nutr, 27, 1456–1469.


  • Details


    GENERAL
    Lineage Physiology General Growth Tolerances Hydrol./digest./degr.
    Phylum:  Firmicutes Class:  Clostridia Order:  Eubacteriales Family:  Oscillospiraceae Genus:  Ruminococcus Gram stain:  + O2 Relation.:  strictly anaerobic Spore:  No spore Motility:  Sessile Morphology:  Coccus
    Health:  Unknown
    Source:  human faeces (Ludwig2009), and rumen
    DNA G+C(%):  39–44
    Opt. T:  37–42℃
    Mid T(℃):  37-40(+)
    High T(℃):  41-42(+)
    Aesculin:  neg Urea:  neg Gelatin:  neg Starch:  neg Milk:  neg Meat:  neg

    CARBOHYDRATE ACID FORMATION
    Monosaccharide O/F Oligosaccharide O/F Polysaccharide O/F Polyol O/F Other O/F
    Arabinose:  neg Fructose:  neg Galactose:  neg Glucose:  d(neg) Mannose:  neg Rhamnose:  neg Xylose:  neg Cellubiose:  + Lactose:  + Maltose:  neg Sucrose:  neg Trehalose:  neg Cellulose:  + Aesculin:  d(neg) Inulin:  neg Starch:  neg Xylan:  + Glycerol:  neg Mannitol:  neg Salicin:  neg

    SUBSTRATE ASSIMILATION & UTILISATION
    Monosaccharide util/assim Oligosaccharide util/assim Other carboh. util/assim Amino acid util/assim Organic acid util/assim
    Arabinose:  neg Glucose:  neg Mannose:  neg Xylose:  neg Cellubiose:  + Lactose:  + Maltose:  neg Raffinose:  neg Sucrose:  neg Mannitol:  neg

    ENZYME ACTIVITY
    Enzymes: General Enzymes: Carbohydrate Enzymes: Protein Enzymes: Arylamidases Enzymes: Esters/fats
    Catalase:  neg Urease:  neg Ac-β-glcamnd:  neg α-Fucosidase:  neg α-Galactosidase:  neg β-Galactosidase:  neg α-Glucosidase:  neg β-Glucosidase:  d β-Glucuronidase:  neg ArgDH:  + GluDC:  + AlanineAA:  neg GluGluAA:  neg GlyAA:  neg LeuAA:  neg LeuGlyAA:  neg PyrrolidAA:  neg AlkalineP:  neg Lecithinase:  neg Lipase:  neg

    METABOLITES - PRODUCTION & USE
    Fuel Usable Metabolites Metabolites Released Special Products Compounds Produced

    Formate:  + Acetate:  + Lactate:  + Ethanol:  + Succinate:  + H2:  + Indole:  neg

    ANTIBIOTICS ℞
    Penicillins & Penems (μg/mL) Cephalosporins (μg/mL) Aminoglycosides (μg/mL) Macrolides (μg/mL) Quinolones (μg/mL)
    ciprofloxacin:  Sens
    Tetracyclines (μg/mL) Vancomycin Class (μg/mL) Polypep/ketides (μg/mL) Heterocycles (μg/mL) Other (μg/mL)

    References


    SPECIFIC REFERENCES FOR RUMINOCOCCUS FLAVEFACIENS
  • Togo2018 - Description of Mediterraneibacter massiliensis, gen. nov., sp. nov., a new genus isolated from the gut microbiota of an obese patient and reclassification of Ruminococcus faecis, Ruminococcus lactaris, Ruminococcus torques, Ruminococcus gnavus and Clostridium glycyrrhizinilyticum as Mediterraneibacter faecis comb. nov., Mediterraneibacter lactaris comb. nov., Mediterraneibacter torques comb. nov., Mediterraneibacter gnavus comb. nov. and Mediterraneibacter glycyrrhizinilyticus comb. nov.
  • Willems1995a - Notes: Phylogenetic Analysis of Ruminococcus flavefaciens, the Type Species of the Genus Ruminococcus, Does Not Support the Reclassification of Streptococcus hansenii and Peptostreptococcus productus as Ruminococci.
  • Ezaki2011aBergey - Bergey's manual of systematic bacteriology. Vol. 3, The Firmicutes. Family Ruminococcaceae, Genus I. Ruminococcus
  • Hungate1957 - Microorganisms in the rumen of cattle fed a constant ration.
  • ElMouzan2018 - Microbiota profile in new-onset pediatric Crohn's disease: data from a non-Western population
  • Finegold2002 - Gastrointestinal microflora studies in late-onset autism
  • Ishaq2017 - Molecular estimation of alteration in intestinal microbial composition in Hashimoto's thyroiditis patients
  • Li2012 - Molecular-phylogenetic characterization of the microbiota in ulcerated and non-ulcerated regions in the patients with Crohn's disease
  • Schwiertz2009 - Microbiota and SCFA in lean and overweight healthy subjects
  • Sjodin2019 - Temporal and long-term gut microbiota variation in allergic disease: A prospective study from infancy to school age
  • VillanuevaMillan2019 - Characterization of gut microbiota composition in HIV-infected patients with metabolic syndrome
  • ...............................
  • GUT MICROBIOME COMPILATIONS AND METASTUDIES FOR RUMINOCOCCUS FLAVEFACIENS
  • Almeida2019 - A new genomic blueprint of the human gut microbiota.
  • Byrd2020 - Stability and dynamics of the human gut microbiome and its association with systemic immune traits.
  • Finegold1974 - Effect of diet on human fecal flora: comparison of Japanese and American diets
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Karlsson2013 - Gut metagenome in European women with normal, impaired and diabetic glucose control
  • Minerbi2019 - Altered microbiome composition in individuals with fibromyalgia
  • Moore1995 - Intestinal floras of populations that have a high risk of colon cancer
  • PerezBrocal2015 - Metagenomic Analysis of Crohn's Disease Patients Identifies Changes in the Virome and Microbiome Related to Disease Status and Therapy, and Detects Potential Interactions and Biomarkers
  • PerisBondia2011 - The active human gut microbiota differs from the total microbiota.
  • RajilicStojanovic2014 - The first 1000 cultured species of the human gastrointestinal microbiota.
  • Rothschild2018 - Environment dominates over host genetics in shaping human gut microbiota.
  • Walker2011 - High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease.
  • Zeller2014 - Potential of fecal microbiota for early-stage detection of colorectal cancer
  • Zupancic2012 - Analysis of the Gut Microbiota in the Old Order Amish and Its Relation to the Metabolic Syndrome.
  • ...............................
  • GENERAL REFERENCES FOR RUMINOCOCCUS FLAVEFACIENS
  • Ludwig2009 - Revised road map to the phylum Firmicutes.