Character | Response | |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Character | Response | |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
Class | Active | Resistant |
---|---|---|
|
|
|
This is a common inhabitant of the human gut.
Fuel sources used:
It can use simple sugars (including lactose) and protein for energy.
Metabolites produced:
Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, BCAAs, lactate, propionate, cobalamin, folate, biotin.
Metabolites consumed:
In addition, our genomic analysis indicates that most members of this species do not consume any reported metabolites.
Disease associations:
This species has been observed at elevated levels in individuals with rheumatoid arthritis, but at reduced levels in individuals with insulin resistance.
All ruminococci require fermentable carbohydrates for growth, and their substrate preferences appear to be based on the diet of their particular host. Most ruminococci that have been studied are those capable of degrading cellulose, much less is known about non-cellulolytic non-ruminant-associated species, and even less is known about the environmental distribution of ruminococci as a whole. [PMID: 28348838]
Ruminococcus species are defined as strictly anaerobic, Gram-positive, non-motile cocci that do not produce endospores and require fermentable carbohydrates for growth (Rainey, 2009b). They were initially described from the isolation of Ruminococcus flavefaciens from the bovine rumen (Sijpesteijn, 1948). Ruminococcus is currently considered a polyphyletic genus, with species members belonging to two separate families: the Ruminococcaceae and the Lachnospiraceae (Rainey & Janssen, 1995). Ruminococcus species are predominantly associated with herbivores and omnivores, relative to carnivores, and that significantly abundant Ruminococcus populations are absent in non-host-associated environments. [PMID: 28348838]
Moore, W. E. C., Johnson, J. L., & Holdeman, L. V. (1976). Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. Nov. And ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. International Journal of Systematic Bacteriology, 26(2), 238–252.
Lineage | Physiology | General | Growth Tolerances | Hydrol./digest./degr. |
|
|
Health: Unknown
Source: human faeces
DNA G+C(%): 43
|
Opt. T: 37℃
Lower T(℃): 30(d)
Mid T(℃): 37(+)
High T(℃): 45(d)
NaCl >6%: 6.5(neg)
Bile reaction(%): 20(d)
|
|
---|
Monosaccharide O/F | Oligosaccharide O/F | Polysaccharide O/F | Polyol O/F | Other O/F |
|
|
|
|
|
---|
Monosaccharide util/assim | Oligosaccharide util/assim | Other carboh. util/assim | Amino acid util/assim | Organic acid util/assim |
|
|
|
|
|
---|
Enzymes: General | Enzymes: Carbohydrate | Enzymes: Protein | Enzymes: Arylamidases | Enzymes: Esters/fats |
|
|
|
|
|
---|
Fuel | Usable Metabolites | Metabolites Released | Special Products | Compounds Produced |
|
---|
Penicillins & Penems (μg/mL) | Cephalosporins (μg/mL) | Aminoglycosides (μg/mL) | Macrolides (μg/mL) | Quinolones (μg/mL) |
|
|
|
|
ciprofloxacin: Sens
|
---|---|---|---|---|
Tetracyclines (μg/mL) | Vancomycin Class (μg/mL) | Polypep/ketides (μg/mL) | Heterocycles (μg/mL) | Other (μg/mL) |
|
|
|
|
|