General | Carbohydrate O/F | Substrate utilisation | Enzymes | Metabolites | Antibiotics

Overview


  • Streptococcus sanguinis is a Gram-positive, non-spore-forming, facultatively anaerobic, non-motile, coccus bacterium. It has been detected in at least 19 gut microbiome compilation studies or metastudies. The DNA G+C content is 43-46%. Streptococcus sanguinis is a common gut coloniser. (Kilian1989; Whiley2011Bergey)



  • This organism has been recovered from dental disease, clinical sources (infection, blood - CCUG) and human faeces. The risk classification (www.baua.de) for this organism is 2, i.e., risk of individual infection, but low risk of spread. It is an opportunistic pathogen. Is a known gut commensal.

  • QUIRKS
  • This organism also produces D-lactate, which could be linked to cronic fatigue syndrome (Sheedy2009).

  • GENERAL CHARACTERISTICS (Kilian1989); (Whiley2011Bergey);
    Character Response
  • Substrates hydrolysed or digested:
  • arginine; mucin;
  • ±
  • Strain-dependent hydrolysis or digestion:
  • aesculin; starch;
  • 🧂
  • Salt tolerance:
  • growth in 4(vr)% is variable; doesn't tolerate 6.5% salt;
  • 💧
  • Bile tolerance:
  • Strain-variable at 40%
  • 🌡
  • Temperature tolerance:
  • doesn't grow at 10℃; strain-variable at 45(d);
  • H+
  • Acid from carbohydrates usually produced:
  • fructose; galactose; glucose; mannose; aesculin; inulin; cellubiose; gentiobiose; lactose; maltose; pullulan; melibiose; raffinose; sucrose; trehalose; sorbitol; α-methyl glucoside; N-Ac glucosamine; salicin;
  • ±
  • Strain-dependent acid from carbs:
  • amygdalin; starch; arbutin;
  • Substrates assimilated or utilised:
  • mucin;
  • ±
  • Strain-dependent substrate utilisation:
  • melibiose;
  • Active enzymes:
  • Ala arylamidase; Ala-Phe-Pro arylamidase; Leu arylamidase; leucine aminopeptidase;
  • ±
  • Strain-dependent active enzymes:
  • chymotrypsin; α-galactosidase; β-galactosidase; β-glucosidase; phosphoamidase; Val arylamidase; valine aminopeptidase;

  • SPECIAL FEATURES (Kilian1989); (Whiley2011Bergey);
    Character Response
  • Metabolites produced:
  • lactate;
  • Metabolites not produced:
  • indole;
  • VP test:
  • not active
  • Haemolysis:
  • alpha
  • Nitrate:
  • not reduced

  • RESPONSE TO ANTIBIOTICS (AlmaguerFlores2006); (Kilian1989); (Goldstein2012);
    Class Active Resistant
  • Penicillins:
  • amoxicillin; amoxicillin-clavulanic acid; ampicillin-sulbactam; ertapenem; penicillin G;
  • Cephalosporins:
  • cefazolin;
  • Macrolides:
  • azithromycin;
  • Tetracyclines:
  • doxycycline;
  • Quinolines:
  • besifloxacin; gatifloxacin; levofloxacin; moxifloxacin;
  • Aminoglycosides:
  • tobramycin;
  • Heterocycles:
  • trimethoprim-sulfamethoxazole;

  • Streptococci are members of the normal flora. Virulence factors of group A streptococci include (1) M protein and lipoteichoic acid for attachment; (2) a hyaluronic acid capsule that inhibits phagocytosis; (3) other extracellular products, such as pyrogenic (erythrogenic) toxin, which causes the rash of scarlet fever; and (4) streptokinase, streptodornase (DNase B), and streptolysins. Some strains are nephritogenic. Immune-mediated sequelae do not reflect dissemination of bacteria. Nongroup A strains have no defined virulence factors. In humans, diseases associated with the streptococci occur chiefly in the respiratory tract, bloodstream, or as skin infections. [https://www.ncbi.nlm.nih.gov/books/NBK7611/]

  • GutFeeling KnowledgeBase COMMENTS [Website]

    The genus Streptococcus , a heterogeneous group of Gram-positive bacteria, has broad significance in medicine and industry. Various streptococci are important ecologically as part of the normal microbial flora of animals and humans; some can also cause diseases that range from subacute to acute or even chronic. Among the significant human diseases attributable to streptococci are scarlet fever, rheumatic heart disease, glomerulonephritis, and pneumococcal pneumonia. Streptococci are essential in industrial and dairy processes and as indicators of pollution. [https://www.ncbi.nlm.nih.gov/books/NBK7611/]

  • Finegold, S. M., Howard, R. A., & Vera, L. S. (1974). Effect of diet on human intestinal fecal flora: comparison of Japanese and American diets. Am. J. Clin. Nutr, 27, 1456–1469.


  • Details


    GENERAL
    Lineage Physiology General Growth Tolerances Hydrol./digest./degr.
    Phylum:  Firmicutes Class:  Bacilli Order:  Lactobacillales Family:  Streptococcaceae Genus:  Streptococcus Gram stain:  + O2 Relation.:  facultatively anaerobic Spore:  No spore Motility:  Sessile Morphology:  Coccus
    Health:  Unknown
    Source:  dental disease, clinical sources (infection, blood - CCUG) and human faeces
    DNA G+C(%):  43-46
    Low T(℃):  10(neg)
    High T(℃):  45(d)
    NaCl 3-5%:  4(vr)
    NaCl >6%:  6.5(neg)
    Bile reaction(%):  40(d)
    Aesculin:  d Urea:  neg Gelatin:  vr Starch:  d Arginine:  + Hippurate:  neg

    CARBOHYDRATE ACID FORMATION
    Monosaccharide O/F Oligosaccharide O/F Polysaccharide O/F Polyol O/F Other O/F
    Arabinose:  neg D-Arabinose:  neg L-Arabinose:  neg Fructose:  + Fucose:  neg D-Fucose:  neg Galactose:  + Glucose:  + Mannose:  + Rhamnose:  neg Ribose:  neg Sorbose:  neg D-Tagatose:  neg Xylose:  neg L-Xylose:  neg Cellubiose:  d(+) Gentiobiose:  + Lactose:  + Maltose:  + Melezitose:  neg Melibiose:  d(+) Sucrose:  + Trehalose:  + Turanose:  neg Amygdalin:  d Dextrin:  neg Aesculin:  d(+) Glycogen:  neg Inulin:  d(+) Starch:  d Adonitol:  neg D-Arabitol:  neg L-Arabitol:  neg Dulcitol:  neg Erythritol:  neg Glycerol:  neg Inositol:  neg Mannitol:  neg Sorbitol:  d(+) Xylitol:  neg Arbutin:  d Gluconate:  neg 2-Ketogluconate:  neg 5-Ketogluconate:  neg Me-α-D-Glc:  d(+) Me-α-D-Mann:  neg Me-Xyloside:  neg NAc-α-GA:  + Salicin:  +

    SUBSTRATE ASSIMILATION & UTILISATION
    Monosaccharide util/assim Oligosaccharide util/assim Other carboh. util/assim Amino acid util/assim Organic acid util/assim
    Melibiose:  d Hippurate:  neg

    ENZYME ACTIVITY
    Enzymes: General Enzymes: Carbohydrate Enzymes: Protein Enzymes: Arylamidases Enzymes: Esters/fats
    Catalase:  neg Urease:  neg Hyaluridonase:  neg α-Arab:  neg Ac-α-glcamnd:  neg Ac-β-glcamnd:  neg α-Fucosidase:  neg α-Galactosidase:  d β-Galactosidase:  d α-Glucosidase:  neg β-Glucosidase:  d β-Glucuronidase:  neg α-Mannosidase:  neg β-Mannosidase:  neg Xylosidase:  neg ArgDH:  vr Chymotrypsin:  d GluDC:  neg LeuAP:  + LysDC:  neg OrnDC:  neg ValAP:  d AlanineAA:  + AlaPheProAA:  + GluGluAA:  neg GlyTrpAA:  vr GlyAA:  vr LeuAA:  + LeuGlyAA:  neg PyrrolidAA:  neg ValAA:  d AlkalineP:  neg AcidP:  vr Esterase(C4):  neg EstLip(C8):  neg Lipase(C14):  neg Phosphoamidase:  d

    METABOLITES - PRODUCTION & USE
    Fuel Usable Metabolites Metabolites Released Special Products Compounds Produced

    Lactate:  + Indole:  neg

    ANTIBIOTICS ℞
    Penicillins & Penems (μg/mL) Cephalosporins (μg/mL) Aminoglycosides (μg/mL) Macrolides (μg/mL) Quinolones (μg/mL)
    amoxicillin:  S(1)
    Augmentin:  S(MIC50): 0.064, MIC90: 0.5, RNG: (0.016-0.5)
    amp-sulb:  S(MIC50): 0.03, MIC90: 0.06, RNG: (0.015–0.06)
    penicillin_G:  S(MIC50): 0.064, MIC90: 0.5, RNG: (0.016-0.5)
    ertapenem:  S(MIC50): 0.03, MIC90: 0.06, RNG: (0.03–0.125)
    cefazolin:  S(MIC50): 0.25, MIC90: 0.5, RNG: (0.06–0.5)
    tobramycin:  R(MIC50): 16, MIC90: 32, RNG: (0.5-128)
    azithromycin:  S(MIC50): 0.06, MIC90: 1, RNG: (0.015–1)
    besifloxacin:  S(MIC50): 0.06, MIC90: 0.12, RNG: (0.015-2)
    ciprofloxacin:  Var(MIC50): 1, MIC90: 4, RNG: (0.12->8)
    gatifloxacin:  S(MIC50): 0.25, MIC90: 0.5, RNG: (0.03-8)
    levofloxacin:  S(MIC50): 1, MIC90: 1, RNG: (0.12->8)
    moxifloxacin:  S(MIC50): 0.12, MIC90: 0.25, RNG: (0.03-4)
    Tetracyclines (μg/mL) Vancomycin Class (μg/mL) Polypep/ketides (μg/mL) Heterocycles (μg/mL) Other (μg/mL)
    doxycycline:  S(MIC50): 0.125, MIC90: 4, RNG: (0.06–8)
    SXT:  S(MIC50): 0.03, MIC90: 0.06, RNG: (0.008–0.06)
    clindamycin:  Var(MIC50): 0.125, MIC90: 256, RNG: (0.064->256)

    References


    SPECIFIC REFERENCES FOR STREPTOCOCCUS SANGUINIS
  • AlmaguerFlores2006 - Proportion of antibiotic resistance in subgingival plaque samples from Mexican subjects.
  • Kilian1989 - Taxonomic Study of Viridans Streptococci: Description of Streptococcus gordonii sp. nov. and Emended Descriptions of Streptococcus sanguis (White and Niven 1946), Streptococcus oralis (Bridge and Sneath 1982), and Streptococcus mitis (Andrewes and Horder 1906).
  • Whiley2011Bergey - Bergey's manual of systematic bacteriology. Vol. 3, The Firmicutes. Family Streptococcaceae, Genus I. Streptococcus
  • Watanabe1981 - Studies on streptococci. I. Distribution of fecal streptococci in man.
  • Kinumaki2015 - Characterization of the gut microbiota of Kawasaki disease patients by metagenomic analysis
  • Sheedy2009 - Increased d-lactic Acid intestinal bacteria in patients with chronic fatigue syndrome
  • Goldstein2012 - Ceftaroline versus isolates from animal bite wounds: comparative in vitro activities against 243 isolates, including 156 Pasteurella species isolates.
  • ...............................
  • GUT MICROBIOME COMPILATIONS AND METASTUDIES FOR STREPTOCOCCUS SANGUINIS
  • Aujoulat2014 - Temporal dynamics of the very premature infant gut dominant microbiota.
  • Benno1984 - The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants.
  • Benno1986 - Comparison of the fecal microflora in rural Japanese and urban Canadians.
  • Benno1989 - Comparison of fecal microflora of elderly persons in rural and urban areas of Japan.
  • Bik2006 - Molecular analysis of the bacterial microbiota in the human stomach.
  • Byrd2020 - Stability and dynamics of the human gut microbiome and its association with systemic immune traits.
  • De2020 - Metagenomic analysis of gut microbiome and resistome of diarrheal fecal samples from Kolkata, India, reveals the core and variable microbiota including signatures of microbial dark matter.
  • Dubourg2013 - The gut microbiota of a patient with resistant tuberculosis is more comprehensively studied by culturomics than by metagenomics.
  • Finegold1974 - Effect of diet on human fecal flora: comparison of Japanese and American diets
  • Finegold1977 - Fecal microbial flora in Seventh Day Adventist populations and control subjects.
  • Hu2019 - The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients
  • Lagier2016 - Culture of previously uncultured members of the human gut microbiota by culturomics.
  • McLaughlin2010 - The bacteriology of pouchitis: a molecular phylogenetic analysis using 16S rRNA gene cloning and sequencing.
  • New2022 - Collective effects of human genomic variation on microbiome function.
  • RajilicStojanovic2014 - The first 1000 cultured species of the human gastrointestinal microbiota.
  • Walker2011 - High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease.
  • Yang2020 - Species-Level Analysis of Human Gut Microbiota With Metataxonomics.
  • Yang2020a - Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families
  • Zeller2014 - Potential of fecal microbiota for early-stage detection of colorectal cancer
  • ...............................
  • GENERAL REFERENCES FOR STREPTOCOCCUS SANGUINIS
  • Ludwig2009 - Revised road map to the phylum Firmicutes.
  • Derrien2010Bergey - Bergey's manual of systematic bacteriology. Vol. 4, The Lentisphaerae. Family Victivallaceae, Genus I. Victivallis
  • Derrien2010aBergey - Bergey's manual of systematic bacteriology. Vol. 4, The Verrucomicrobia. Family Akkermansiaceae, Genus I. Akkermansia
  • Derrien2010 - Mucin-bacterial interactions in the human oral cavity and digestive tract.