Pu
•biom
e
Human•Topics
Carbohydrate digestion
Overview
Amylose & amylopectin
Undigestible carbs
Foods with fibre
Protein digestion
Fat digestion
Human Milk Oligosaccharides
Overview
HMO Structural Guide
Di- & Trisaccharides
Tetraose & Tetrasaccharides
Pentaose
Hexaose
Octaose
Decaose
Miscellaneous
MUC2 Oligosaccharides
Antibiotics vs Good Bacteria
Human / Bacteria Digestion
Carbohydrates
Monosaccharides
Polyols
Di- & tri-saccharides
Polysaccharides
Miscellaneous
Organic acids
SMCF Acids
Polyacids
Hydroxy-, Oxo-acids and Miscell.
Aromatic Acids
Amino acids
21 Original
Unconventional
Other
Nitrogen cmpds
Bacteria•Topics
Guide to Tables
General Physiology
Bacteria & Health
Substrate Utilisation
Carbohydrates
Monosaccharides and polyols
Oligo- & polysaccharides
Miscellaneous
Organic acids
SMCF Acids
Polyacids
Miscellaneous
Amino acids
21 Original
Unconventional
Other
Nitrogen cmpds
Antibiotic activity against
Penicillins and Penems
Cephems
Aminoglycosides and Macrolides
Quinolones and Tetracyclines
Glycopeptides and Polyketides
Heterocycles and Miscellaneous
All Antibiotics
Oxidation / Fermentation
Monosaccharides & polyols
Oligo- & Poly-saccharides
Miscellaneous
Biochemical Tests
Metabolites Produced
Bacterial Enzymes
General enzymes
'Carbo'sidases
Esterases
Proteases
Amidases
Hydrolysis / Digestion
Resources
Reference List
Ref List (Alt.)
Create Ref
Search
Login
Submit
Update:
Hamilton2007
Title
*
Keywords
Bacteria
Citation
*
Authors
DOI/PMIB
Journal
Year
Volume
Issue
Pages
Notes
<p>To obtain information on the concentration and spectrum of bile acids in human cecal content, samples were obtained from 19 persons who had died an unnatural death from causes such as trauma, homicide, suicide, or drug overdose. Bile acid concentration was measured via an enzymatic assay for 3α-hydroxy bile acids; bile acid classes were determined by electrospray ionization mass spectrometry and individual bile acids by gas chromatography mass spectrometry and liquid chromatography mass spectrometry. The 3α-hydroxy bile acid concentration (?mol bile acid/ml cecal content) was 0.4 ± 0.2 mM (mean ± SD); the total 3-hydroxy bile acid concentration was 0.6 ± 0.3 mM. The aqueous concentration of bile acids (supernatant after centrifugation) was identical, indicating that most bile acids were in solution. By liquid chromatography mass spectrometry, bile acids were mostly in unconjugated form (90 ± 9%, mean ± SD); sulfated, nonamidated bile acids were 7 ± 5%, and nonsulfated amidated bile acids (glycine or taurine conjugates) were 3 ± 7%. By gas chromatography mass spectrometry, 10 bile acids were identified: deoxycholic (34 ± 16%), lithocholic (26 ± 10%), and ursodeoxycholic (6 ± 9), as well as their primary bile acid precursors cholic (6 ± 9%) and chenodeoxycholic acid (7 ± 8%). In addition, 3?-hydroxy derivatives of some or all of these bile acids were present and averaged 27 ± 18% of total bile acids, indicating that 3?-hydroxy bile acids are normal constituents of cecal content. In the human cecum, deconjugation and dehydroxylation of bile acids are nearly complete, resulting in most bile acids being in unconjugated form at submicellar and subsecretory concentrations.<br />AB - To obtain information on the concentration and spectrum of bile acids in human cecal content, samples were obtained from 19 persons who had died an unnatural death from causes such as trauma, homicide, suicide, or drug overdose. Bile acid concentration was measured via an enzymatic assay for 3α-hydroxy bile acids; bile acid classes were determined by electrospray ionization mass spectrometry and individual bile acids by gas chromatography mass spectrometry and liquid chromatography mass spectrometry. The 3α-hydroxy bile acid concentration (?mol bile acid/ml cecal content) was 0.4 ± 0.2 mM (mean ± SD); the total 3-hydroxy bile acid concentration was 0.6 ± 0.3 mM. The aqueous concentration of bile acids (supernatant after centrifugation) was identical, indicating that most bile acids were in solution. By liquid chromatography mass spectrometry, bile acids were mostly in unconjugated form (90 ± 9%, mean ± SD); sulfated, nonamidated bile acids were 7 ± 5%, and nonsulfated amidated bile acids (glycine or taurine conjugates) were 3 ± 7%. By gas chromatography mass spectrometry, 10 bile acids were identified: deoxycholic (34 ± 16%), lithocholic (26 ± 10%), and ursodeoxycholic (6 ± 9), as well as their primary bile acid precursors cholic (6 ± 9%) and chenodeoxycholic acid (7 ± 8%). In addition, 3?-hydroxy derivatives of some or all of these bile acids were present and averaged 27 ± 18% of total bile acids, indicating that 3?-hydroxy bile acids are normal constituents of cecal content. In the human cecum, deconjugation and dehydroxylation of bile acids are nearly complete, resulting in most bile acids being in unconjugated form at submicellar and subsecretory concentrations.</p>
Submit