Pu
•biom
e
Human•Topics
Carbohydrate digestion
Overview
Amylose & amylopectin
Undigestible carbs
Foods with fibre
Protein digestion
Fat digestion
Human Milk Oligosaccharides
Overview
HMO Structural Guide
Di- & Trisaccharides
Tetraose & Tetrasaccharides
Pentaose
Hexaose
Octaose
Decaose
Miscellaneous
MUC2 Oligosaccharides
Antibiotics vs Good Bacteria
Human / Bacteria Digestion
Carbohydrates
Monosaccharides
Polyols
Di- & tri-saccharides
Polysaccharides
Miscellaneous
Organic acids
SMCF Acids
Polyacids
Hydroxy-, Oxo-acids and Miscell.
Aromatic Acids
Amino acids
21 Original
Unconventional
Other
Nitrogen cmpds
Bacteria•Topics
Guide to Tables
General Physiology
Bacteria & Health
Substrate Utilisation
Carbohydrates
Monosaccharides and polyols
Oligo- & polysaccharides
Miscellaneous
Organic acids
SMCF Acids
Polyacids
Miscellaneous
Amino acids
21 Original
Unconventional
Other
Nitrogen cmpds
Antibiotic activity against
Penicillins and Penems
Cephems
Aminoglycosides and Macrolides
Quinolones and Tetracyclines
Glycopeptides and Polyketides
Heterocycles and Miscellaneous
All Antibiotics
Oxidation / Fermentation
Monosaccharides & polyols
Oligo- & Poly-saccharides
Miscellaneous
Biochemical Tests
Metabolites Produced
Bacterial Enzymes
General enzymes
'Carbo'sidases
Esterases
Proteases
Amidases
Hydrolysis / Digestion
Resources
Reference List
Ref List (Alt.)
Create Ref
Search
Login
Submit
Update:
Nemec2001
Title
*
Keywords
Bacteria
Citation
*
Authors
DOI/PMIB
Journal
Year
Volume
Issue
Pages
Notes
<p>The taxonomic status of two recently described phenetically distinctive groups within the genus Acinetobacter, designated phenon 1 and phenon 2, was investigated further. The study collection included 51 strains, mainly of clinical origin, from different European countries with properties of either phenon 1 (29 strains) or phenon 2 (22 strains). DNA-DNA hybridization studies and DNA polymorphism analysis by AFLP revealed that these phenons represented two new genomic species. Furthermore, 16S rRNA gene sequence analysis of three representatives of each phenon showed that they formed two distinct lineages within the genus Acinetobacter. The two phenons could be distinguished from each other and from all hitherto-described Acinetobacter (genomic) species by specific phenotypic features and amplified rDNA restriction analysis patterns. The names Acinetobacter ursingii sp. nov. (type strain LUH 3792T = NIPH 137T = LMG 19575T = CNCTC 6735T) and Acinetobacter schindleri sp. nov. (type strain LUH 5832T = NIPH 1034T = LMG 19576T = CNCTC 6736T) are proposed for phenon 1 and phenon 2, respectively. Clinical and epidemiological data indicate that A. ursingii has the capacity to cause bloodstream infections in hospitalized patients.</p>
Submit